Skip to main content

Going Inside: Correlation between External and Internal Respiratory Motion

  • Chapter
  • First Online:
  • 582 Accesses

Abstract

In an ideal setting, the target area could be located directly using a non-invasive, high resolution, high speed tracking or imaging modality. Currently, however, there is no single device capable of meeting all these demands. Options available are either invasive, like biplanar fluoroscopy [34-38] or EM tracking [2, 20, 41], are still under development, like US tracking [13, 29, 42], live Magnetic Resonance Imaging (MRI) [17, 21, 26, 27] or monoscopic fluoroscopy [3, 4], or require correlation between external signals and sparsely recorded internal data [23, 25, 32, 33]. Since most of these technologies are not yet available clinically (like live MRI, US tracking, or monoscopic fluoroscopy), cannot be used universally (like EMtracking) or are too invasive (like real-time biplanar fluoroscopy), the main focus is placed on hybrid methods which require external surrogates to fill the gaps between less frequently acquired internal data.

Parts of this chapter have been published in [8, 9]

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, S., Yi, B., Suh, Y., Kim, J., Lee, S., Shin, S., Choi, E.: A feasibility study on the prediction of tumour location in the lung from skin motion. The British Journal of Radiology 77, 588–596 (2004). DOI 10.1259/bjr/64800801

    Article  Google Scholar 

  2. Balter, J.M., Wright, J.N., Newell, L.J., Friemel, B., Dimmer, S., Cheng, Y., Wong, J., Vertatschitsch, E., Mate, T.P.: Accuracy of a wireless localization system for radiotherapy. International Journal of Radiation Oncology, Biology, Physics 61(3), 933–937 (2005). DOI 10.1016/j.ijrobp.2004.11.009

    Article  Google Scholar 

  3. Berbeco, R.I., Jiang, S.B., Sharp, G.C., Chen, G.T.Y., Mostafavi, H., Shirato, H.: Integrated radiotherapy imaging system (IRIS): design considerations of tumour tracking with linac gantry-mounted diagnostic X-ray systems with flatpanel detectors. Physics in Medicine and Biology 49(2), 243–255 (2004). DOI 10.1088/0031-9155/49/2/005

    Article  Google Scholar 

  4. Cho, B.C., Suh, Y., Dieterich, S., Keall, P.J.: A monoscopic method for realtime tumour tracking using combined occasional X-ray imaging and continuous respiratory monitoring. Physics in Medicine and Biology 53(11), 2837– 2855 (2008). DOI 10.1088/0031-9155/53/11/006

    Article  Google Scholar 

  5. DeMenthon, D.F., Davis, L.S.: Model-based object pose in 25 lines of code. International Journal of Computer Vision 15(1–2), 123–141 (1995). DOI 10.1007/bf01450852

    Article  Google Scholar 

  6. Ernst, F., Bruder, R., Schlaefer, A., Schweikard, A.: Correlation between external and internal respiratory motion: a validation study. International Journal of Computer Assisted Radiology and Surgery 6, epub ahead of print (2011). DOI 10.1007/s11548-011-0653-6

  7. Ernst, F., Bruder, R., Schlaefer, A., Schweikard, A.: Validating an svr-based correlation algorithm on human volumetric ultrasound data. In: Proceedings of the 25th International Congress and Exhibition on Computer Assisted Radiology and Surgery (CARS’11), International Journal of Computer Assisted Radiology and Surgery, vol. 6, pp. S59–S60. CARS, Berlin, Germany (2011)

    Google Scholar 

  8. Ernst, F., Koch, C., Schweikard, A.: A novel recording tool for education and quality assurance in digital angiography. In: 2010 Annual Meeting of the RSNA (2010)

    Google Scholar 

  9. Ernst, F., Martens, V., Schlichting, S., Beˇsirevic¸, A., Kleemann, M., Koch, C., Petersen, D., Schweikard, A.: Correlating chest surface motion to motion of the liver using ε-SVR – a porcine study. In: G.Z. Yang, D.J. Hawkes, D. Rueckert, A. Noble, C. Taylor (eds.) MICCAI 2009, Part II, Lecture Notes in Computer Science, vol. 5762, pp. 356–364. MICCAI, Springer, London (2009). DOI 10.1007/978-3-642-04271-3 44

  10. George, R., Vedam, S.S., Chung, T.D., Ramakrishnan, V., Keall, P.J.: The application of the sinusoidal model to lung cancer patient respiratory motion. Medical Physics 32(9), 2850–2861 (2005). DOI 10.1118/1.2001220

    Article  Google Scholar 

  11. Gierga, D.P., Brewer, J., Sharp, G.C., Betke, M., Willett, C.G., Chen, G.T.Y.: The correlation between internal and external markers for abdominal tumors: Implications for respiratory gating. International Journal of Radiation Oncology, Biology, Physics 61(5), 1551–1558 (2005). DOI 10.1016/j.ijrobp.2004.12.013

    Article  Google Scholar 

  12. Hoisak, J.D.P., Sixel, K.E., Tirona, R., Cheung, P.C.F., Pignol, J.P.: Correlation of lung tumor motion with external surrogate indicators of respiration. International Journal of Radiation Oncology, Biology, Physics 60(4), 1298–1306 (2004). DOI 10.1016/j.ijrobp.2004.07.681

    Article  Google Scholar 

  13. Hsu, A., Miller, N.R., Evans, P.M., Bamber, J.C.,Webb, S.: Feasibility of using ultrasound for real-time tracking during radiotherapy. Medical Physics 32(6), 1500–1512 (2005). DOI 10.1118/1.1915934

    Article  Google Scholar 

  14. Jald´en, J., Isaaksson, M.: Temporal prediction and spatial correlation of breathing motion by adaptive filtering. Tech. rep., Stanford University, Stanford, CA (2001)

    Google Scholar 

  15. Kanoulas, E., Aslam, J.A., Sharp, G.C., Berbeco, R.I., Nishioka, S., Shirato, H., Jiang, S.B.: Derivation of the tumor position from external respiratory surrogates with periodical updating of the internal/external correlation. Physics in Medicine and Biology 52(17), 5443–5456 (2007). DOI 10.1088/0031- 9155/52/17/023

    Article  Google Scholar 

  16. Khamene, A., Warzelhan, J.K., Vogt, S., Elgort, D., Chefd’Hotel, C., Duerk, J.L., Lewin, J., Wacker, F.K., Sauer, F.: Characterization of internal organ motion using skin marker positions. In: C. Barillot, D.R. Haynor, P. Hellier (eds.) MICCAI 2004, Part II, LNCS, vol. 3217, pp. 526–533. MICCAI, Springer, St. Malo, France (2004)

    Google Scholar 

  17. Kirkby, C., Stanescu, T., Rathee, S., Carlone, M., Murray, B., Fallone, B.G.: Patient dosimetry for hybrid mri-radiotherapy systems. Medical Physics 35(3), 1019–1027 (2008). DOI 10.1118/1.2839104

    Article  Google Scholar 

  18. Kn¨opke, M., Ernst, F.: Flexible Markergeometrien zur Erfassung von Atmungs- und Herzbewegungen an der K¨orperoberfl¨ache. In: D. Bartz, S. Bohn, J. Hoffmann (eds.) 7. Jahrestagung der Deutschen Gesellschaft f¨ur Computer- und Roboterassistierte Chirurgie, vol. 7, pp. 15–16. CURAC, Leipzig, Germany (2008)

    Google Scholar 

  19. Koch, N., Liu, H.H., Starkschall, G., Jacobson, M., Forster, K.M., Liao, Z., Komaki, R., Stevens, C.W.: Evaluation of internal lung motion for respiratorygated radiotherapy using MRI: Part I–correlating internal lung motion with skin fiducial motion. International Journal of Radiation Oncology, Biology, Physics 60(5), 1459–1472 (2004). DOI 10.1016/j.ijrobp.2004.05.055

    Article  Google Scholar 

  20. Kupelian, P.A., Willoughby, T., Mahadevan, A., Djemil, T., Weinstein, G., Jani, S., Enke, C., Solberg, T., Flores, N., Liu, D., Beyer, D., Levine, L.: Multiinstitutional clinical experience with the Calypso system in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. International Journal of Radiation Oncology, Biology, Physics 67(4), 1088–1098 (2007). DOI 10.1016/j.ijrobp.2006.10.026

    Article  Google Scholar 

  21. Lagendijk, J.J.W., Raaymakers, B.W., Raaijmakers, A.J.E., Overweg, J., Brown, K.J., Kerkhof, E.M., van der Put, R.W., H˚ardemark, B., van Vulpen, M., van der Heide, U.A.: MRI/linac integration. Radiotherapy and Oncology 86(1), 25–29 (2008). DOI 10.1016/j.radonc.2007.10.034

    Google Scholar 

  22. McClelland, J.R., Blackall, J.M., Tarte, S., Chandler, A.C., Hughes, S., Ahmad, S., Landau, D.B., Hawkes, D.J.: A continuous 4D motion model from multiple respiratory cycles for use in lung radiotherapy. Medical Physics 33(9), 3348–3358 (2006). DOI 10.1118/1.2222079

    Article  Google Scholar 

  23. Murphy, M.J.: Tracking moving organs in real time. Seminars in Radiation Oncology 14(1), 91–100 (2004). DOI 10.1053/j.semradonc.2003.10.005

    Article  Google Scholar 

  24. Murphy, M.J., Isaaksson, M., Jald´en, J.: Adaptive filtering to predict lung tumor breathing motion during imageguided radiation therapy. In: Proceedings of the 16th International Conference and Exhibition on Computer Assisted Radiology and Surgery (CARS’02), vol. 16, pp. 539–544. Paris, France (2002)

    Google Scholar 

  25. Ozhasoglu, C., Murphy, M.J., Glosser, G., Bodduluri, M., Schweikard, A., Forster, K.M., Martin, D.P., Adler Jr., J.R.: Real-time tracking of the tumor volume in precision radiotherapy and body radiosurgery – a novel approach to compensate for respiratory motion. In: H.U. Lemke, I. Kiyonari, D. Kunio, M.W. Vannier, A.G. Farman (eds.) Computer-Assisted Radiology and Surgery (CARS 2000), pp. 691–696. Elsevier (2000)

    Google Scholar 

  26. Raaijmakers, A.J.E., Raaymakers, B.W., Lagendijk, J.J.W.: Experimental verification of magnetic field dose effects for the MRI-accelerator. Physics in Medicine and Biology 52(14), 4283–4291 (2007). DOI 10.1088/0031- 9155/52/14/017

    Article  Google Scholar 

  27. Raaymakers, B.W., Raaijmakers, A.J.E., Kotte, A.N.T.J., Jette, D., Lagendijk, J.J.W.: Integrating an MRI scanner with a 6 MVradiotherapy accelerator: dose deposition in a transverse magnetic field. Physics in Medicine and Biology 49(17), 4109–4118 (2004). DOI 10.1088/0031-9155/49/17/019

    Article  Google Scholar 

  28. Richter, L., Bruder, R., Schlaefer, A.: Proper force-torque sensor system for robotized TMS: Automatic coil calibration. In: Proceedings of the 24th International Conference and Exhibition on Computer Assisted Radiology and Surgery (CARS’10), International Journal of Computer Assisted Radiology and Surgery, vol. 5, pp. S422–S423. CARS, Geneva, Switzerland (2010)

    Google Scholar 

  29. Sawada, A., Yoda, K., Kokubo, M., Kunieda, T., Nagata, Y., Hiraoka, M.: A technique for noninvasive respiratory gated radiation treatment system based on a real time 3d ultrasound image correlation: A phantom study. Medical Physics 31(2), 245–250 (2004). DOI 10.1118/1.1634482

    Article  Google Scholar 

  30. Sayeh, S.,Wang, J., Main,W.T., Kilby,W., Maurer Jr., C.R.: Robotic Radiosurgery. Treating Tumors that Move with Respiration, 1st edn., chap. Respiratory motion tracking for robotic radiosurgery, pp. 15–30. Springer, Berlin (2007). DOI 10.1007/978-3-540-69886-9

  31. Schweikard, A., Glosser, G., Bodduluri, M., Murphy, M.J., Adler Jr., J.R.: Robotic Motion Compensation for Respiratory Movement during Radiosurgery. Journal of Computer-Aided Surgery 5(4), 263–277 (2000). DOI 10.3109/10929080009148894

    Article  Google Scholar 

  32. Schweikard, A., Shiomi, H., Adler Jr., J.R.: Respiration tracking in radiosurgery. Medical Physics 31(10), 2738–2741 (2004). DOI 10.1118/1.1774132

    Article  Google Scholar 

  33. Seppenwoolde, Y., Berbeco, R.I., Nishioka, S., Shirato, H., Heijmen, B.: Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: A simulation study. Medical Physics 34(7), 2774–2784 (2007). DOI 10.1118/1.2739811

    Article  Google Scholar 

  34. Shimizu, S., Shirato, H., Kitamura, K., Ogura, S., Akita-Dosaka, H., Tateishi, U., Watanabe, Y., Fujita, K., Shimizu, T., Miyasaka, K.: Fluoroscopic real-time tumor-tracking radiation treatment (RTRT) can reduce internal margin (IM) and set-up margin (SM) of planning target volume (PTV) for lung tumors. In: Proceedings of the 42nd annual ASTRO meeting, International Journal of Radiation Oncology, Biology, Physics, vol. 48, pp. 166–167 (2000). DOI 10.1016/s0360-3016(00)80127-3

  35. Shimizu, S., Shirato, H., Kitamura, K., Shinohara, N., Harabayashi, T., Tsukamoto, T., Koyanagi, T., Miyasaka, K.: Use of an implanted marker and realtime tracking of the marker for the positioning of prostate and bladder cancers. International Journal of Radiation Oncology, Biology, Physics 48(5), 1591– 1597 (2000). DOI 10.1016/s0360-3016(00)00809-9

    Article  Google Scholar 

  36. Shimizu, S., Shirato, H., Ogura, S., Akita-Dosaka, H., Kitamura, K., Nishioka, T., Kagei, K., Nishimura, M., Miyasaka, K.: Detection of lung tumor movement in real-time tumor-tracking radiotherapy. International Journal of Radiation Oncology, Biology, Physics 51(2), 304–310 (2001). DOI 10.1016/s0360- 3016(01)01641-8

    Article  Google Scholar 

  37. Shirato, H., Shimizu, S., Kunieda, T., Kitamura, K., van Herk, M., Kagei, K., Nishioka, T., Hashimoto, S., Fujita, K., Aoyama, H., Tsuchiya, K., Kudo, K., Miyasaka, K.: Physical aspects of a real-time tumor-tracking system for gated radiotherapy. International Journal of Radiation Oncology, Biology, Physics 48(4), 1187 – 1195 (2000). DOI 10.1016/s0360-3016(00)00748-3

    Article  Google Scholar 

  38. Shirato, H., Shimizu, S., Shimizu, T., Nishioka, T., Miyasaka, K.: Real-time tumour-tracking radiotherapy. The Lancet 353(9161), 1331 – 1332 (1999). DOI 10.1016/s0140-6736(99)00700-x

    Article  Google Scholar 

  39. Vedam, S.S., Kini, V.R., Keall, P.J., Ramakrishnan, V., Mostafavi, H., Mohan, R.: Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker. Medical Physics 30(4), 505–513 (2003). DOI 10.1118/1.1558675

    Article  Google Scholar 

  40. West, J.B.: Respiratory Physiology: The Essentials, 8th edn. Lippincott Williams & Wilkins (2008)

    Google Scholar 

  41. Willoughby, T.R., Kupelian, P.A., Pouliot, J., Shinohara, K., Aubin, M., III, M.R., Skrumeda, L.L., Balter, J.M., Litzenberg, D.W., Hadley, S.W.,Wei, J.T., Sandler, H.M.: Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer. International Journal of Radiation Oncology, Biology, Physics 65(2), 528–534 (2006). DOI 10.1016/j.ijrobp.2006.01.050

    Google Scholar 

  42. Wu, J., Dandekar, O., Nazareth, D., Lei, P., D’Souza, W.D., Shekhar, R.: Effect of ultrasound probe on dose delivery during real-time ultrasound-guided tumor tracking. In: 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS’06), pp. 3799–3802 (2006). DOI 10.1109/iembs.2006.260076

  43. Yan, H., Yin, F.F., Zhu, G.P., Ajlouni, M., Kim, J.H.: Adaptive prediction of internal target motion using external marker motion: a technical study. Physics in Medicine and Biology 51(1), 31–44 (2006). DOI 10.1088/0031-9155/51/1/003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ernst, F. (2012). Going Inside: Correlation between External and Internal Respiratory Motion. In: Compensating for Quasi-periodic Motion in Robotic Radiosurgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1912-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1912-9_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1911-2

  • Online ISBN: 978-1-4614-1912-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics