Skip to main content
  • 551 Accesses

Abstract

Actively compensating for respiratory and pulsatory motion-as outlined in section 2.5-requires real time tracking of marker positions on the patient’s chest and subsequent prediction (see chapter 4) and correlation (see chapter 5). It is clear that we deal with some kind of control process: the robot is moved in real time according to processed sensory input from the tracking system. To quantify the accuracy of the individual processing steps, new evaluation metrics are introduced (section 3.2), a new method to reduce measurement noise will be discussed (section 3.3, published in [7, 10]), the noise level of different tracking systems will be evaluated (section 3.4) and motion artefacts inherent to active optical cameras will be analysed (section 3.5, published in [8]).

Parts of this chapter have been published in [7, 8, 10, 20]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-d point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence 9(5), 698–700 (1987)

    Article  Google Scholar 

  2. Atracsys LLC: Advanced Tracking Systems. Available online (2009). URL http://www.atracsys.com/pdfs/atracsys_tracking_systems.pdf

  3. Aussem, A., Murtagh, F.: A neuro-wavelet strategy for web traffic forecasting. Research in Official Statistics 1(1), 65–87 (1998)

    Google Scholar 

  4. Bartz, D., Bohn, S., Hoffmann, J. (eds.): Jahrestagung der Deutschen Gesellschaft f¨ur Computer- und Roboterassistierte Chirurgie, vol. 7. CURAC, Leipzig, Germany (2008)

    Google Scholar 

  5. Beckett, B.S.: Illustrated Human and Social Biology. Oxford University Press, Oxford (1995)

    Google Scholar 

  6. Ernst, F.: Motion compensation in radiosurgery. In: RTMARTWorkshop 2009. Institute for Robotics, University of L¨ubeck, Institute for Robotics, University of L¨ubeck, L¨ubeck, Germany (2009)

    Google Scholar 

  7. Ernst, F., Bruder, R., Schlaefer, A.: Processing of respiratory signals from tracking systems for motion compensated IGRT. In: 49th Annual Meeting of the AAPM, Medical Physics, vol. 34, p. 2565. American Association of Physicists in Medicine, Minneapolis-St. Paul, MN, USA (2007). DOI 10.1118/1.2761413. TU-EE-A3-4

  8. Ernst, F., Bruder, R., Schlaefer, A., Schweikard, A.: Improving the quality of biomedical signal tracking using prediction algorithms. In: UKACC International Conference on CONTROL 2010, vol. 8, pp. 301–305. United Kingdom Automatic Control Council, Coventry, UK (2010)

    Google Scholar 

  9. Ernst, F., Bruder, R., Schlaefer, A., Schweikard, A.: Performance measures and pre-processing for respiratory motion prediction. In: 53rd Annual Meeting of the AAPM, Medical Physics, vol. 38, p. 3857. American Association of Physicists in Medicine, Vancouver, CA (2011). DOI 10.1118/1.3613523. THC- BRC-06

  10. Ernst, F., Schlaefer, A., Schweikard, A.: Processing of respiratory motion traces for motion-compensated radiotherapy. Medical Physics 37(1), 282–294 (2010). DOI 10.1118/1.3271684

    Article  Google Scholar 

  11. Ernst, F., Schweikard, A.: A survey of algorithms for respiratory motion prediction in robotic radiosurgery. In: S. Fischer, E. Maehle (eds.) 39. GI Jahrestagung, Lecture Notes in Informatics, vol. 154, pp. 1035–1043. GI, Bonner K¨ollen, L¨ubeck, Germany (2009)

    Google Scholar 

  12. Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America A 4(4), 629–642 (1987). DOI 10.1364/JOSAA.4.000629

    Article  MathSciNet  Google Scholar 

  13. Kn¨opke, M., Ernst, F.: Flexible Markergeometrien zur Erfassung von Atmungs- und Herzbewegungen an der K¨orperoberfl¨ache. In: Bartz et al. [4], pp. 15–16

    Google Scholar 

  14. KUKA Robot Group: KUKA.Ethernet RSI XML 1.1. User’s manual (03.05.2007)

    Google Scholar 

  15. Martens, V., Ernst, F., Fr¨ankler, T., Matth¨aus, L., Schlichting, S., Schweikard, A.: Ein Client–server Framework f¨ur Trackingsysteme in medizinischen Assistenzsystemen. In: Bartz et al. [4], pp. 7–10

    Google Scholar 

  16. Murphy, M.J.: Tracking moving organs in real time. Seminars in Radiation Oncology 14(1), 91–100 (2004). DOI 10.1053/j.semradonc.2003.10.005

    Article  Google Scholar 

  17. Nason, G.P., Silverman, B.W.: Wavelets and Statistics, Lecture Notes in Statistics, vol. 103, chap. The stationary wavelet transform and some statistical applications, pp. 281–300. Springer (1995)

    Google Scholar 

  18. Papie˙z, L., Timmerman, R.D.: Hypofractionation in radiation therapy and its impact. Medical Physics 35(1), 112–118 (2008). DOI 10.1118/1.2816228

    Google Scholar 

  19. Renaud, O., Starck, J.L., Murtagh, F.:Wavelet-based combined signal filtering and prediction. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics 35(6), 1241–1251 (2005)

    Google Scholar 

  20. Richter, L., Ernst, F., Martens, V., Matth¨aus, L., Schweikard, A.: Client/server framework for robot control in medical assistance systems. In: Proceedings of the 24th International Congress and Exhibition on Computer Assisted Radiology and Surgery (CARS’10), International Journal of Computer Assisted Radiology and Surgery, vol. 5, pp. 306–307. CARS, Geneva, Switzerland (2010)

    Google Scholar 

  21. Shensa, M.J.: The discrete wavelet transform: wedding the ˜a trous and Mallat algorithms. IEEE Transactions on Signal Processing 40(10), 2464–2482 (1992). DOI 10.1109/78.157290

    Article  MATH  Google Scholar 

  22. Sherwood, L.: Fundamentals of Physiology: A Human Perspective. Brooks Cole, London (2006)

    Google Scholar 

  23. Tortora, G.J., Anagnostakos, N.P.: Principles of Anatomy and Physiology, 6th edn. Harper-Collins, New York (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ernst, F. (2012). Signal Processing. In: Compensating for Quasi-periodic Motion in Robotic Radiosurgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1912-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1912-9_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1911-2

  • Online ISBN: 978-1-4614-1912-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics