Signal Processing

  • Floris Ernst


Actively compensating for respiratory and pulsatory motion-as outlined in section 2.5-requires real time tracking of marker positions on the patient’s chest and subsequent prediction (see chapter 4) and correlation (see chapter 5). It is clear that we deal with some kind of control process: the robot is moved in real time according to processed sensory input from the tracking system. To quantify the accuracy of the individual processing steps, new evaluation metrics are introduced (section 3.2), a new method to reduce measurement noise will be discussed (section 3.3, published in [7, 10]), the noise level of different tracking systems will be evaluated (section 3.4) and motion artefacts inherent to active optical cameras will be analysed (section 3.5, published in [8]).


Root Mean Square Error Light Emit Diode Root Mean Square Discrete Fourier Transform Distance Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-d point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence 9(5), 698–700 (1987)CrossRefGoogle Scholar
  2. 2.
    Atracsys LLC: Advanced Tracking Systems. Available online (2009). URL
  3. 3.
    Aussem, A., Murtagh, F.: A neuro-wavelet strategy for web traffic forecasting. Research in Official Statistics 1(1), 65–87 (1998)Google Scholar
  4. 4.
    Bartz, D., Bohn, S., Hoffmann, J. (eds.): Jahrestagung der Deutschen Gesellschaft f¨ur Computer- und Roboterassistierte Chirurgie, vol. 7. CURAC, Leipzig, Germany (2008)Google Scholar
  5. 5.
    Beckett, B.S.: Illustrated Human and Social Biology. Oxford University Press, Oxford (1995)Google Scholar
  6. 6.
    Ernst, F.: Motion compensation in radiosurgery. In: RTMARTWorkshop 2009. Institute for Robotics, University of L¨ubeck, Institute for Robotics, University of L¨ubeck, L¨ubeck, Germany (2009)Google Scholar
  7. 7.
    Ernst, F., Bruder, R., Schlaefer, A.: Processing of respiratory signals from tracking systems for motion compensated IGRT. In: 49th Annual Meeting of the AAPM, Medical Physics, vol. 34, p. 2565. American Association of Physicists in Medicine, Minneapolis-St. Paul, MN, USA (2007). DOI  10.1118/1.2761413. TU-EE-A3-4
  8. 8.
    Ernst, F., Bruder, R., Schlaefer, A., Schweikard, A.: Improving the quality of biomedical signal tracking using prediction algorithms. In: UKACC International Conference on CONTROL 2010, vol. 8, pp. 301–305. United Kingdom Automatic Control Council, Coventry, UK (2010)Google Scholar
  9. 9.
    Ernst, F., Bruder, R., Schlaefer, A., Schweikard, A.: Performance measures and pre-processing for respiratory motion prediction. In: 53rd Annual Meeting of the AAPM, Medical Physics, vol. 38, p. 3857. American Association of Physicists in Medicine, Vancouver, CA (2011). DOI  10.1118/1.3613523. THC- BRC-06
  10. 10.
    Ernst, F., Schlaefer, A., Schweikard, A.: Processing of respiratory motion traces for motion-compensated radiotherapy. Medical Physics 37(1), 282–294 (2010). DOI  10.1118/1.3271684 CrossRefGoogle Scholar
  11. 11.
    Ernst, F., Schweikard, A.: A survey of algorithms for respiratory motion prediction in robotic radiosurgery. In: S. Fischer, E. Maehle (eds.) 39. GI Jahrestagung, Lecture Notes in Informatics, vol. 154, pp. 1035–1043. GI, Bonner K¨ollen, L¨ubeck, Germany (2009)Google Scholar
  12. 12.
    Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America A 4(4), 629–642 (1987). DOI  10.1364/JOSAA.4.000629 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kn¨opke, M., Ernst, F.: Flexible Markergeometrien zur Erfassung von Atmungs- und Herzbewegungen an der K¨orperoberfl¨ache. In: Bartz et al. [4], pp. 15–16Google Scholar
  14. 14.
    KUKA Robot Group: KUKA.Ethernet RSI XML 1.1. User’s manual (03.05.2007)Google Scholar
  15. 15.
    Martens, V., Ernst, F., Fr¨ankler, T., Matth¨aus, L., Schlichting, S., Schweikard, A.: Ein Client–server Framework f¨ur Trackingsysteme in medizinischen Assistenzsystemen. In: Bartz et al. [4], pp. 7–10Google Scholar
  16. 16.
    Murphy, M.J.: Tracking moving organs in real time. Seminars in Radiation Oncology 14(1), 91–100 (2004). DOI  10.1053/j.semradonc.2003.10.005 CrossRefGoogle Scholar
  17. 17.
    Nason, G.P., Silverman, B.W.: Wavelets and Statistics, Lecture Notes in Statistics, vol. 103, chap. The stationary wavelet transform and some statistical applications, pp. 281–300. Springer (1995)Google Scholar
  18. 18.
    Papie˙z, L., Timmerman, R.D.: Hypofractionation in radiation therapy and its impact. Medical Physics 35(1), 112–118 (2008). DOI  10.1118/1.2816228 Google Scholar
  19. 19.
    Renaud, O., Starck, J.L., Murtagh, F.:Wavelet-based combined signal filtering and prediction. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics 35(6), 1241–1251 (2005)Google Scholar
  20. 20.
    Richter, L., Ernst, F., Martens, V., Matth¨aus, L., Schweikard, A.: Client/server framework for robot control in medical assistance systems. In: Proceedings of the 24th International Congress and Exhibition on Computer Assisted Radiology and Surgery (CARS’10), International Journal of Computer Assisted Radiology and Surgery, vol. 5, pp. 306–307. CARS, Geneva, Switzerland (2010)Google Scholar
  21. 21.
    Shensa, M.J.: The discrete wavelet transform: wedding the ˜a trous and Mallat algorithms. IEEE Transactions on Signal Processing 40(10), 2464–2482 (1992). DOI  10.1109/78.157290 MATHCrossRefGoogle Scholar
  22. 22.
    Sherwood, L.: Fundamentals of Physiology: A Human Perspective. Brooks Cole, London (2006)Google Scholar
  23. 23.
    Tortora, G.J., Anagnostakos, N.P.: Principles of Anatomy and Physiology, 6th edn. Harper-Collins, New York (1990)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Floris Ernst
    • 1
  1. 1.Institute for Robotics and Cognitive SystemsUniversity of LübeckLübeckGermany

Personalised recommendations