Skip to main content

Motion Compensation in Robotic Radiosurgery

  • Chapter
  • First Online:
Compensating for Quasi-periodic Motion in Robotic Radiosurgery
  • 581 Accesses

Abstract

This chapter describes the principles of motion compensation in radiotherapy with a focus on robotic radiosurgery, starting with a brief description of the medical implications. Throughout, special emphasis will be placed on the CyberKnife_R system and we will outline the problems originating from the aim of real-time motion compensation. The main current application of robotic radiotherapy is the treatment of malignant tumours while a second, very promising field is the therapy of cardiac arrhythmia, especially of atrial fibrillation. An outline of this project called CyberHeart, and the challenges emanating from it, will be given in section 2.5.a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACC/AHA/ESC: ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation. Circulation 114(7), e257–354 (2006). DOI 10.1161/CIRCULATIONAHA.106.177292 [2] Adler Jr., J.R.: Interactive image-guided neurosurgery, chap. Image-based frameless stereotactic radiosurgery, pp. 81–89. American Association of Neurological Surgeons (1993)

    Google Scholar 

  2. Adler Jr., J.R.: Clinical neurosurgery, The Congress of Neurological Surgeons, vol. 52, chap. Accuray, incorporated: a neurosurgical business case study, pp. 87–96. Lippincott, Williams and Wilkins (2005)

    Google Scholar 

  3. Adler Jr., J.R., Chang, S.D., Murphy, M.J., Doty, J., Geis, P., Hancock, S.L.: The CyberKnife: A frameless robotic system for radiosurgery. Stereotactic and Functional Neurosurgery 69, 124–128 (1997). DOI 10.1159/000099863

    Article  Google Scholar 

  4. Adler Jr., J.R., Hancock, S.L.: The Neurotron 1000: A system for frameless stereotactic radiosurgery. Perspectives in Neurological Surgery 5(1), 127–133 (1994)

    Google Scholar 

  5. Adler Jr., J.R., Schweikard, A.: Future health: computers and medicine in the twenty-first century, chap. Bloodless robotic surgery, pp. 123–129. St. Martin’s Press, Inc., New York, NY, USA (1995)

    Google Scholar 

  6. Adler Jr., J.R., Schweikard, A., Murphy, M.J., Hancock, S.L.: Image-guided neurosurgery: clinical applications of surgical navigation, chap. Image-guided stereotactic radiosurgery: The CyberKnife, pp. 193–204. Quality Medical Publishing, St. Louis, MO (1998)

    Google Scholar 

  7. Bruder, R., Cai, T., Ernst, F., Schweikard, A.: 3D ultrasound-guided motion compensation for intravascular radiation therapy. In: Proceedings of the 23rd International Conference and Exhibition on Computer Assisted Radiology and Surgery (CARS’09), International Journal of CARS, vol. 4, pp. 25–26. CARS, Berlin, Germany (2009). DOI 10.1007/s11548-009-0309-y

  8. Bruder, R., Ernst, F., Schlaefer, A., Schweikard, A.: Real-time tracking of the pulmonary veins in 3D ultrasound of the beating heart. In: 51st Annual Meeting of the AAPM, Medical Physics, vol. 36, p. 2804. American Association of Physicists in Medicine, Anaheim, CA, USA (2009). DOI 10.1118/1.3182643. TH-C-304A-07

  9. Chang, S.D., Murphy, M.J., Martin, D.P., Hancock, S.L., Doty, J., Adler Jr., J.R.: Radiosurgery, vol. 3, chap. Image-Guided Robotic Radiosurgery: Clinical and Radiographic Results with the CyberKnife, pp. 23–33. Karger Medical and Scientific Publishers, New York (1999)

    Google Scholar 

  10. D’Souza, W.D., McAvoy, T.J.: An analysis of the treatment couch and control system dynamics for respiration-induced motion compensation. Medical Physics 33(12), 4701–4709 (2006). DOI 10.1118/1.2372218

    Article  Google Scholar 

  11. D’Souza, W.D., Naqvi, S.A., Yu, C.X.: Real-time intra-fraction-motion tracking using the treatment couch: a feasibility study. Physics in Medicine and Biology 50(17), 4021–4033 (2005). DOI 10.1088/0031-9155/50/17/007

    Article  Google Scholar 

  12. Galvin, J.M., Ezzell, G., Eisbrauch, A., Yu, C.X., Butler, B., Xiao, Y., Rosen, I., Rosenman, J., Sharpe, M.B., Xing, L., Xia, P., Lomax, T., Low, D.A., Palta, J.: Implementing IMRT in clinical practice: a joint document of the american society for therapeutic radiology and oncology and the american association of physicists in medicine. International Journal of Radiation Oncology, Biology, Physics 58(5), 1616–1634 (2004). DOI 10.1016/j.ijrobp.2003.12.008

    Article  Google Scholar 

  13. Galvin, J.M., Smith, A.R., Lally, B.: Characterization of a multileaf collimator system. International Journal of Radiation Oncology, Biology, Physics 25(2), 181–192 (1993)

    Article  Google Scholar 

  14. Guthrie, B.L., Adler Jr., J.R.: Frameless stereotaxy: Computer interactive neurosurgery. Perspectives in Neurological Surgery 2(1), 1–22 (1991)

    Google Scholar 

  15. Guthrie, B.L., Adler Jr., J.R.: Clinical Neurosurgery, The Congress of Neurological Surgeons, vol. 38, chap. Computer-assisted preoperative planning, interactive surgery, and frameless stereotaxy, pp. 112–131. Williams and Wilkins (1992)

    Google Scholar 

  16. Hanley, J., Debois, M.M., Mah, D., Mageras, G.S., Raben, A., Rosenzweig, K., Mychalczak, B., Schwartz, L.H., Gloeggler, P.J., Lutz, W., Ling, C.C., Leibel, S.A., Fuks, Z., Kutcher, G.J.: Deep inspiration breath-hold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation. International Journal of Radiation Oncology, Biology, Physics 45(3), 603–611 (1999). DOI 10.1016/s0360-3016(99)00154-6

    Article  Google Scholar 

  17. Hirai, E., Tsukuda, K., Kamino, Y., Miura, S., Takayama, K., Aoi, T.: Stateof- the-art medical treatment machine MHI-TM2000. Mitsubishi Heavy Industries Technical Review 46(1), 29–32 (2009)

    Google Scholar 

  18. Hoogeman, M., Pr´evost, J.B., Nuyttens, J., P¨oll, J., Levendag, P., Heijmen, B.: Clinical accuracy of the respiratory tumor tracking system of the CyberKnife: Assessment by analysis of log files. International Journal of Radiation Oncology, Biology, Physics 74(1), 297–303 (2009). DOI 10.1016/j.ijrobp.2008.12.041

    Google Scholar 

  19. IMRT Collaborative Working Group: Intensity-modulated radiotherapy: current status and issues of interest. International Journal of Radiation Oncology, Biology, Physics 51(4), 880–914 (2001)

    Article  Google Scholar 

  20. Jaffray, D.A., Drake, D.G., Moreau, M., Martinez, A.A., Wong, J.W.: A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets. International Journal of Radiation Oncology, Biology, Physics 45(3), 773–789 (1999). DOI 10.1016/s0360-3016(99)00118-2

    Article  Google Scholar 

  21. Kamino, Y., Takayama, K., Kokubo, M., Narita, Y., Hirai, E., Kawada, N., Mizowaki, T., Nagata, Y., Nishidai, T., Hiraoka, M.: Development of a fourdimensional image-guided radiotherapy system with a gimbaled X-ray head. International Journal of Radiation Oncology, Biology, Physics 66(1), 271–278 (2006). DOI 10.1016/j.ijrobp.2006.04.044

    Article  Google Scholar 

  22. Keall, P.J., Joshi, S., Vedam, S.S., Siebers, J.V., Kini, V.R., Mohan, R.: Fourdimensional radiotherapy planning for DMLC-based respiratory motion tracking. Medical Physics 32(4), 942–951 (2005). DOI 10.1118/1.1879152

    Article  Google Scholar 

  23. Keall, P.J., Kini, V.R., Vedam, S.S., Mohan, R.: Motion adaptive X-ray therapy: a feasibility study. Physics in Medicine and Biology 46(1), 1–10 (2001)

    Article  Google Scholar 

  24. Lu, W.: Real-time motion-adaptive delivery (MAD) using binary MLC: II.Rotational beam (tomotherapy) delivery. Physics in Medicine and Biology 53(22), 6513–6531 (2008)

    Google Scholar 

  25. Lu, W., Chen, M., Ruchala, K.J., Chen, Q., Langen, K.M., Kupelian, P.A., Olivera, G.H.: Real-time motion-adaptive-optimization (MAO) in Tomo- Therapy. Physics in Medicine and Biology 54(14), 4373–4398 (2009). DOI 10.1088/0031-9155/54/14/003

    Article  Google Scholar 

  26. Mackie, T.R., Holmes, T., Swerdloff, S., Reckwerdt, P., Deasy, J.O., Yang, J., Paliwal, B., Kinsella, T.: Tomotherapy: A new concept for the delivery of dynamic conformal radiotherapy. Medical Physics 20(6), 1709–1719 (1993). DOI 10.1118/1.596958

    Article  Google Scholar 

  27. Mageras, G.S., Mohan, R., Burman, C., Barest, G.D., Kutcher, G.J.: Compensators for three-dimensional treatment planning. Medical Physics 18(2), 133–140 (1991). DOI 10.1118/1.596699

    Article  Google Scholar 

  28. Maguire, P., Sharma, A., Fogarty, T., Sumanaweera, T., Jack, A.: Non-invasive radiosurgical ablation of the myocardium: Pre clinical electrophysiology and histology. In: Boston Atrial Fibrillation Symposium (2008)

    Google Scholar 

  29. McClelland, J.R., Webb, S., McQuaid, D., Binnie, D.M., Hawkes, D.J.: Tracking ’differential organ motion’ with a ’breathing’ multileaf collimator: magnitude of problem assessed using 4D CT data and a motion-compensation strategy. Physics in Medicine and Biology 52(16), 4805–4826 (2007). DOI 10.1088/0031-9155/52/16/007

    Article  Google Scholar 

  30. McQuaid, D., Webb, S.: IMRT delivery to a moving target by dynamic MLC tracking: delivery for targets moving in two dimensions in the beam’s eye view. Physics in Medicine and Biology 51(19), 4819–4839 (2006). DOI 10.1088/0031-9155/51/19/007

    Article  Google Scholar 

  31. Mehta, M.P., Noyes, W.R., Mackie, T.R.: Linear accelerator configurationsfor radiosurgery. Seminars in Radiation Oncology 5(3), 203–212 (1995). DOI 10.1016/s1053-4296(05)80018-9. Stereotactic Radiosurgery

    Article  Google Scholar 

  32. Mewis, C., Neuberger, H.R., B¨ohm, M.: Vorhoffflimmern. Deutsche Medizinische Wochenschrift 131(50), 2843–2854 (2006). DOI 10.1055/s-2006- 957212

  33. Mitsubishi Heavy Industries, Ltd.: MHI’s first radiotherapy machine for overseas to begin treatment at Brussels University Hospital (UZ Brussel). Press release (2009). URL http://www.mhi.co.jp/en/news/story/ 0912031325.html. MHI News No. 1325

  34. Muacevic, A., Staehler, M., Drexler, C., Wowra, B., Reiser, M., Tonn, J.C.: Technical description, phantom accuracy, and clinical feasibility for fiducialfree frameless real-time image-guided spinal radiosurgery. Journal of Neurosurgery 5(4), 303–312 (2006). DOI 10.3171/spi.2006.5.4.303. PMID: 17048766

    Article  Google Scholar 

  35. Neicu, T., Shirato, H., Seppenwoolde, Y., Jiang, S.B.: Synchronized moving aperture radiation therapy (SMART): average tumour trajectory for lung patients. Physics in Medicine and Biology 48(5), 587–598 (2003). DOI 10.1088/0031-9155/48/5/303

    Article  Google Scholar 

  36. Pankratov, M., Benetti, F., Vivian, J.: Method for non-invasive heart treatment (2005). U.S. patent 6,889,695

    Google Scholar 

  37. Papie˙z, L.: DMLC leaf-pair optimal control of IMRT delivery for a moving rigid target. Medical Physics 31(10), 2742–2754 (2004). DOI 10.1118/1.1779358

    Google Scholar 

  38. Rosenzweig, K.E., Hanley, J., Mah, D., Mageras, G.S., Hunt, M., Toner, S., Burman, C., Ling, C.C., Mychalczak, B., Fuks, Z., Leibel, S.A.: The deep inspiration breath-hold technique in the treatment of inoperable non-small-cell lung cancer. International Journal of Radiation Oncology, Biology, Physics 48(1), 81–87 (2000). DOI 10.1016/s0360-3016(00)00583-6

    Article  Google Scholar 

  39. Rosenzweig, K.E., Hanley, J., Mychalczak, B., Fuks, Z., Mageras, G.S., Yorke, E., Ling, C.C., Burman, C., Ginsberg, R.J., Kris, M.G., Leibel, S.A.: Phase i dose escalation study using the deep inspiration breath hold technique to safely increase dose to 81 gy in the treatment of inoperable non-small cell lung cancer. International Journal of Radiation Oncology, Biology, Physics 48(3, supp. 1), 233–233 (2000). DOI 10.1016/S0360-3016(00)80260-6

  40. Schweikard, A., Adler Jr., J.R., Latombe, J.C.: Motion planning in stereotaxic radiosurgery. IEEE Transactions on Robotics and Automation 9(6), 764–774 (1993). DOI 10.1109/70.265920

    Article  Google Scholar 

  41. Schweikard, A., Bodduluri, M., Adler Jr., J.R.: Planning for camera-guided robotic radiosurgery. IEEE Transactions on Robotics and Automation 14(6), 951–962 (1998). DOI 10.1109/70.736778

    Article  Google Scholar 

  42. Schweikard, A., Glosser, G., Bodduluri, M., Murphy, M.J., Adler Jr., J.R.: Robotic Motion Compensation for Respiratory Movement during Radiosurgery. Journal of Computer-Aided Surgery 5(4), 263–277 (2000). DOI 10.3109/10929080009148894

    Article  Google Scholar 

  43. Schweikard, A., Shiomi, H., Adler Jr., J.R.: Respiration tracking in radiosurgery. Medical Physics 31(10), 2738–2741 (2004). DOI 10.1118/1.1774132

    Article  Google Scholar 

  44. Schweikard, A., Shiomi, H., Adler Jr., J.R.: Respiration tracking in radiosurgery without fiducials. International Journal of Medical Robotics and Computer Assisted Surgery 1(2), 19–27 (2005). DOI 10.1002/rcs.38

    Article  Google Scholar 

  45. Schweikard, A., Shiomi, H., Uchida, M., Adler Jr., J.R.: Extracranial Stereotactic Radiotherapy and Radiosurgery, chap. Whole-Body Radiosurgery with the Cyberknife, pp. 71–87. Taylor and Francis, New York (2005)

    Google Scholar 

  46. Schweikard, A., Tombropoulos, R., Kavraki, L., Adler Jr., J.R., Latombe, J.C.: Treatment planning for a radiosurgical system with general kinematics. In: IEEE International Conference on Robotics and Automation (ICRA 1994), pp. 1720–1727 (1994). DOI 10.1109/robot.1994.351344

  47. Seppenwoolde, Y., Berbeco, R.I., Nishioka, S., Shirato, H., Heijmen, B.: Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: A simulation study. Medical Physics 34(7), 2774–2784 (2007). DOI 10.1118/1.2739811

    Article  Google Scholar 

  48. Sharma, A., Maguire, P., Sumanaweera, T., Wong, D., Marshall, R., Fajardo, L., Fogarty, T.: Non-invasive ablation of the left superior pulmonary vein-left atrial junction using stereotactic focussed radiation. Circulation 116, II 489 (2007)

    Google Scholar 

  49. Sharma, A., Maguire, P., Wong, D., Sumanaweera, T., Steele, J., Peterson, P., Fajardo, L., Takeda, P., Fogarty, T.: New non-invasive therapy for cardiac arrhythmias using stereotactic radiosurgery: Initial feasibility testing. In: 2007 Heart Rhythm Symposium, Heart Rhythm, vol. 4, p. S68 (2007)

    Google Scholar 

  50. Shirato, H., Oita, M., Fujita, K., Watanabe, Y., Miyasaka, K.: Feasibility of synchronization of real-time tumor-tracking radiotherapy and intensitymodulated radiotherapy from viewpoint of excessive dose from fluoroscopy.International Journal of Radiation Oncology, Biology, Physics 60(1), 335 –341 (2004). DOI 10.1016/j.ijrobp.2004.04.028

    Google Scholar 

  51. Shirato, H., Shimizu, S., Kitamura, K., Nishioka, T., Kagei, K., Hashimoto, S., Aoyama, H., Kunieda, T., Shinohara, N., Dosaka-Akita, H., Miyasaka,K.: Four-dimensional treatment planning and fluoroscopic real-time tumortracking radiotherapy for moving tumor. International Journal of RadiationOncology, Biology, Physics 48(2), 435–442 (2000). DOI 10.1016/s0360- 3016(00)00625-8

    Article  Google Scholar 

  52. Shirato, H., Shimizu, S., Kunieda, T., Kitamura, K., van Herk, M., Kagei, K., Nishioka, T., Hashimoto, S., Fujita, K., Aoyama, H., Tsuchiya, K., Kudo, K.,Miyasaka, K.: Physical aspects of a real-time tumor-tracking system for gated radiotherapy. International Journal of Radiation Oncology, Biology, Physics 48(4), 1187 – 1195 (2000). DOI 10.1016/s0360-3016(00)00748-3

    Article  Google Scholar 

  53. Shirato, H., Shimizu, S., Shimizu, T., Nishioka, T., Miyasaka, K.: Real-time tumour-tracking radiotherapy. The Lancet 353(9161), 1331 – 1332 (1999). DOI 10.1016/s0140-6736(99)00700-x

    Article  Google Scholar 

  54. Simpson, R.G., Chen, C.T., Grubbs, E.A., Swindell, W.: A 4-MV CT scanner for radiation therapy: The prototype system. Medical Physics 9(4), 574–579 (1982). DOI 10.1118/1.595102

    Article  Google Scholar 

  55. Smith, R.: World’s first heart surgery using radiation. telegraph.co.uk (02.11.2009). URL http://www. telegraph.co.uk/journalists/rebecca-smith/6469279/ Worlds-first-heart-surgery-using-radiation.html

  56. Soltys, S.G., Kalani, M.Y.S., Cheshier, S.H., Szabo, K.A., Lo, A., Chang, S.D.: Stereotactic radiosurgery for a cardiac sarcoma: A case report. Technology in Cancer Research and Treatment 7(5), 363–367 (2008)

    Google Scholar 

  57. Sterzing, F., Schubert, K., Sroka-Perez, G., Kalz, J., Debus, J., Herfarth, K.: Helical tomotherapy. Strahlentherapie und Onkologie 184(1), 8–14 (2008). DOI 10.1007/s00066-008-1778-6

    Article  Google Scholar 

  58. Takahashi, S.: Conformation radiotherapy: rotation techniques as applied to radiography and radiotherapy of cancer. Acta radiologica: diagnosis supp. 242, 1–142 (1965)

    Google Scholar 

  59. Takayama, K., Mizowaki, T., Kokubo, M., Kawada, N., Nakayama, H., Narita, Y., Nagano, K., Kamino, Y., Hiraoka, M.: Initial validations for pursuing irradiation using a gimbals tracking system. Radiotherapy and Oncology 93(1), 45–49 (2009). DOI 10.1016/j.radonc.2009.07.011

    Article  Google Scholar 

  60. Universitair Ziekenhuis Brussel: UZ Brussel inaugurates Vero high precision radiation therapy system. Press release (2009). URL http://www. uzbrussel.be/u/view/en/3000848-UZ+Brussel+inaugurates+Vero+ High+Precision+Radiation+Therapy+System.html

  61. Urschel Jr., H.C., Kresl, J.J., Luketich, J.D., Papie˙z, L., Timmerman, R.D. (eds.): Robotic Radiosurgery. Treating Tumors that Move with Respiration, 1st edn. Springer, Berlin (2007). DOI 10.1007/978-3-540-69886-9

  62. VHL Family Alliance: Robot does brain surgery. VHL Family Forum 2(3), 1– 2 (1994). URL http://www.vhl.org/newsletter/vhl1994/94caster. php

  63. Wiersma, R.D., Mao, W., Xing, L.: Combined kV and MV imaging for realtime tracking of implanted fiducial markers. Medical Physics 35(4), 1191– 1198 (2008). DOI 10.1118/1.2842072

    Article  Google Scholar 

  64. Wilbert, J., Meyer, J., Baier, K., Guckenberger, M., Herrmann, C., Hess, R., Janka, C., Ma, L., Mersebach, T., Richter, A., Roth, M., Schilling, K., Flentje, M.: Tumor tracking and motion compensation with an adaptive tumor tracking system (ATTS): system description and prototype testing. Medical Physics 35(9), 3911–3921 (2008). DOI 10.1118/1.2964090

    Article  Google Scholar 

  65. Wong, J.W., Sharpe, M.B., Jaffray, D.A., Kini, V.R., Robertson, J.M., Stromberg, J.S., Martinez, A.A.: The use of active breathing control (ABC) to reduce margin for breathing motion. International Journal of Radiation OncologyBiology, Physics 44(4), 911–919 (1999). DOI 10.1016/s0360-3016(99)00056- 5

    Article  Google Scholar 

  66. Xu, J., Papanikolaou, N., Shi, C., Jiang, S.B.: Synchronized moving aperture radiation therapy (SMART): superimposing tumor motion on IMRT MLC leaf sequences under realistic delivery conditions. Physics in Medicine and Biology 54(16), 4993–5007 (2009). DOI 10.1088/0031-9155/54/16/010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ernst, F. (2012). Motion Compensation in Robotic Radiosurgery. In: Compensating for Quasi-periodic Motion in Robotic Radiosurgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1912-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1912-9_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1911-2

  • Online ISBN: 978-1-4614-1912-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics