Advanced Techniques

  • Leandro Balby MarinhoEmail author
  • Andreas Hotho
  • Robert Jäschke
  • Alexandros Nanopoulos
  • Steffen Rendle
  • Lars Schmidt-Thieme
  • Gerd Stumme
  • Panagiotis Symeonidis
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


In this chapter we describe the state-of-the-art in social tagging recommender systems. Many of the algorithms presented here borrow ideas and techniques from other areas such as information retrieval, machine learning, and statistical relational learning. In Section 4.3 we also describe many approaches for exploiting additional sources of information such as the content of resources and the social relations of users.


Singular Value Decomposition Recommender System Latent Semantic Indexing PARAFAC Model Parallel Factor Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Michael W. Berry, Susan T. Dumais, and Gavin W. O’Brien. Using linear algebra for intelligent information retrieval. SIAM Rev., 37:573– 595, December 1995.Google Scholar
  2. 2.
    Sergey Brin and Lawrence Page. The anatomy of a large-Scale hypertextual web search engine. Computer Networks and ISDN Systems, 30(1- 7):107–117, April 1998.CrossRefGoogle Scholar
  3. 3.
    Iván Cantador, Alejandro Bellogín, Ignacio Fernández-Tobás, and Sergio López-Hernández. Semantic contextualisation of social tag-based profiles and item recommendations. In E-Commerce and Web Technologies, pages 101–113. 2011.Google Scholar
  4. 4.
    Iván Cantador, Ioannis Konstas, and Joemon M. Jose. Categorising social tags to improve folksonomy-based recommendations. Web Semant., 9:1–15, 2011.Google Scholar
  5. 5.
    J.D. Carroll and J.J. Chang. Analysis of individual differences in multidimensional scaling via an n-way generalization of eckart-young decomposition. Psychometrika, 35:283–319, 1970.zbMATHCrossRefGoogle Scholar
  6. 6.
    Soumen Chakrabarti, Byron Dom, and Piotr Indyk. Enhanced hypertext categorization using hyperlinks. SIGMOD Rec., 27(2):307–318, 1998.Google Scholar
  7. 7.
    Shouchun Chen, Fei Wang, and Changshui Zhang. Simultaneous heterogeneous data clustering based on higher order relationships. In Proceedings of the Seventh IEEE International Conference on Data Mining Workshops, ICDMW ’07, pages 387–392, Washington, DC, USA, 2007. IEEE Computer Society.Google Scholar
  8. 8.
    Boris Chidlovskii and Aymen Benzarti. Local metric learning for tag recommendation in social networks. In Proceedings of the 11th ACM symposium on Document engineering, DocEng ’11, pages 205–208, 2011. 9. Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and Richard Harshman. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6):391–407, 1990.Google Scholar
  9. 9.
    P. Drineas and M. W. Mahoney. A randomized algorithm for a tensorbased generalization of the svd. Linear Algebra and Its Applications, 420(2–3):553–571, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    G. W. Furnas, S. Deerwester, S. T. Dumais, T. K. Landauer, R. A. Harshman, L. A. Streeter, and K. E. Lochbaum. Information retrieval using a singular value decomposition model of latent semantic structure. In Proceedings of the 11th annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR ’88, pages 465–480, New York, NY, USA, 1988. ACM.Google Scholar
  11. 11.
    Manish Gupta, Rui Li, Zhijun Yin, and Jiawei Han. Survey on social tagging techniques. SIGKDD Explor. Newsl., 12:58–72, November 2010.Google Scholar
  12. 12.
    Ido Guy, Naama Zwerdling, Inbal Ronen, David Carmel, and Erel Uziel. Social media recommendation based on people and tags. In Proceeding of the 33rd international ACM SIGIR conference on Research and development in information retrieval, SIGIR ’10, pages 194–201, 2010.Google Scholar
  13. 13.
    R.A. Harshman. Foundations of the parafac procedure: models and conditions for an ’exploratory’ multimodal factor analysis. In UCLA Working Papers in Phonetics, pages 1–84, 1970.Google Scholar
  14. 14.
    Thomas Hofmann. Latent semantic models for collaborative filtering. ACM Transactions on Information Systems, 22(1):89–115, January 2004.CrossRefGoogle Scholar
  15. 15.
    Andreas Hotho, Dominik Benz, Robert Jäschke, and Beate Krause, editors. ECML PKDD Discovery Challenge 2008 (RSDC’08). Workshop at 18th Europ. Conf. on Machine Learning (ECML’08) / 11th Europ. Conf. on Principles and Practice of Knowledge Discovery in Databases (PKDD’08), 2008.Google Scholar
  16. 16.
    Andreas Hotho, Robert Jäschke, Christoph Schmitz, and Gerd Stumme. Information retrieval in folksonomies: Search and ranking. In York Sure and John Domingue, editors, The Semantic Web: Research and Applications, volume 4011 of Lecture Notes in Computer Science, pages 411–426, Berlin/Heidelberg, June 2006. Springer.Google Scholar
  17. 17.
    Meiqun Hu, Ee-Peng Lim, and Jing Jiang. A probabilistic approach to personalized tag recommendation. Social Computing / IEEE International Conference on Privacy, Security, Risk and Trust, 2010 IEEE International Conference on, pages 33–40, 2010.Google Scholar
  18. 18.
    Won Jeon, Sunyoung Cho, Jaeseong Cha, and Hyeran Byun. Tag suggestion using visual content and social tag. In Proceedings of the 5 th International Conference on Ubiquitous Information Management and Communication, ICUIMC ’11, pages 104:1–104:5, 2011.Google Scholar
  19. 19.
    Bo Jiang, Yun Ling, and Jiale Wang. Tag recommendation based on social comment network. Journal of Digital Content Technology and its Applications, 4(8):110–117, 2010. 21. Robert Jäschke, Leandro Balby Marinho, Andreas Hotho, Lars Schmidt- Thieme, and Gerd Stumme. Tag recommendations in folksonomies. In Joost N. Kok, Jacek Koronacki, Ramon López de Mántaras, Stan Matwin, Dunja Mladenic, and Andrzej Skowron, editors, Knowledge Discovery in Databases: PKDD 2007, 11th European Conference on Principles and Practice of Knowledge Discovery in Databases, volume 4702 of Lecture Notes in Computer Science, pages 506–514, Berlin, Heidelberg, 2007. Springer.Google Scholar
  20. 20.
    Heung-Nam Kim, Abdulmajeed Alkhaldi, Abdulmotaleb El Saddik, and Geun-Sik Jo. Collaborative user modeling with user-generated tags for social recommender systems. Expert Syst. Appl., 38:8488–8496, 2011.Google Scholar
  21. 21.
    Heung-Nam Kim, Abdulmajeed Alkhaldi, Abdulmotaleb El Saddik, and Geun-Sik Jo. Collaborative user modeling with user-generated tags for social recommender systems. Expert Systems with Applications, 38(7):8488 – 8496, 2011.Google Scholar
  22. 22.
    Hyon Hee Kim. A personalized recommendation method using a tagging ontology for a social e-learning system. In Proceedings of the Third international conference on Intelligent information and database systems - Volume Part I, ACIIDS’11, pages 357–366, 2011.Google Scholar
  23. 23.
    Tamara G. Kolda and Jimeng Sun. Scalable tensor decompositions for multi-aspect data mining. In ICDM ’08: Proceedings of the 8th IEEE International Conference on Data Mining, pages 363–372. IEEE Computer Society, December 2008.Google Scholar
  24. 24.
    Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In KDD ’08: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 426–434. ACM, 2008.Google Scholar
  25. 25.
    Yehuda Koren. Collaborative filtering with temporal dynamics. In KDD ’09: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 447–456. ACM, 2009.Google Scholar
  26. 26.
    Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 21(4):1253–1278, 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Chenliang Li, Anwitaman Datta, and Aixin Sun. Semantic tag recommendation using concept model. In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information, SIGIR ’11, pages 1159–1160, 2011.Google Scholar
  28. 28.
    Xirong Li, Cees G. M. Snoek, and Marcel Worring. Learning social tag relevance by neighbor voting. IEEE Transactions on Multimedia, 11(7):1310–1322, 2009.Google Scholar
  29. 29.
    Kaipeng Liu, Binxing Fang, andWeizhe Zhang. Speak the same language with your friends: augmenting tag recommenders with social relations. In Proceedings of the 21st ACM conference on Hypertext and hypermedia, HT ’10, pages 45–50, 2010. 32. Qing Lu and Lise Getoor. Link-based classification using labeled and unlabeled data. In Proceedings of the ICML Workshop on The Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining, 2003.Google Scholar
  30. 30.
    Sofus A. Macskassy and Foster Provost. A simple relational classifier. In MRDM ’03: Proceedings of the Second Workshop on Multi-Relational Data Mining at KDD-2003, pages 64–76, 2003.Google Scholar
  31. 31.
    Hinrich Schütze Christopher D. Manning. Introduction to Information Retrieval. ISBN 978-0-521-86571-5. Cambridge University Press, May 2008.Google Scholar
  32. 32.
    Leandro Balby Marinho, Christine Preisach, and Lars Schmidt-Thieme. Relational classification for personalized tag recommendation. In Folke Eisterlehner, Andreas Hotho, and Robert Jäschke, editors, ECML PKDD Discovery Challenge 2009 (DC09), volume 497 of, pages 7–16, 2009.Google Scholar
  33. 33.
    Alexandros Nanopoulos, Dimitrios Rafailidis, Panagiotis Symeonidis, and Yannis Manolopoulos. Musicbox: Personalized music recommendation based on cubic analysis of social tags. IEEE Transactions on Audio, Speech and Language Processing, 18(2):407–412, 2010.Google Scholar
  34. 34.
    Alexandros Nanopoulos Panagiotis Symeonidis, Maria Ruxanda and Yannis Manolopoulos. Ternary semantic analysis of social tags for personalized music recommendation. In ISMIR ’08: Proceedings of the 9th ISMIR Conference, pages 219–224, New York, 2008.Google Scholar
  35. 35.
    Christine Preisach and Lars Schmidt-Thieme. Relational ensemble classification. In ICDM ’06: Proceedings of the 6th International Conference on Data Mining, pages 499–509. IEEE Computer Society, 2006.Google Scholar
  36. 36.
    Adam Rae, Börkur Sigurbjörnsson, and Roelof van Zwol. Improving tag recommendation using social networks. In Adaptivity, Personalization and Fusion of Heterogeneous Information, RIAO ’10, pages 92–99, 2010.Google Scholar
  37. 37.
    Steffen Rendle. Context-Aware Ranking with Factorization Models. Springer Berlin Heidelberg, 1st edition, November 2010.Google Scholar
  38. 38.
    Steffen Rendle. Factorization machines. In Proceedings of the 10th IEEE International Conference on Data Mining. IEEE Computer Society, 2010.Google Scholar
  39. 39.
    Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. BPR: Bayesian personalized ranking from implicit feedback. In UAI ’09: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, 2009.Google Scholar
  40. 40.
    Steffen Rendle, Leandro B. Marinho, Alexandros Nanopoulos, and Lars Schimdt-Thieme. Learning optimal ranking with tensor factorization for tag recommendation. In KDD ’09: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 727–736. ACM, 2009.Google Scholar
  41. 41.
    Steffen Rendle and Lars Schmidt-Thieme. Pairwise interaction tensor factorization for personalized tag recommendation. In WSDM ’10: Proceedings of the Third ACM International Conference on Web Search and Data Mining. ACM, 2010.Google Scholar
  42. 42.
    Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo. In ICML ’08: Proceedings of the 25th International Conference on Machine Learning, pages 880– 887. ACM, 2008.Google Scholar
  43. 43.
    Amnon Shashua and Tamir Hazan. Non-negative tensor factorization with applications to statistics and computer vision. In ICML ’05: Proceedings of the 22nd International Conference on Machine Learning, pages 792–799. ACM, 2005.Google Scholar
  44. 44.
    Jian-Tao Sun, Hua-Jun Zeng, Huan Liu, Yuchang Lu, and Zheng Chen. Cubesvd: a novel approach to personalized web search. In Proceedings of the 14th international conference on World Wide Web, WWW ’05, pages 382–390, New York, NY, USA, 2005. ACM.Google Scholar
  45. 45.
    Panagiotis Symeonidis, Alexandros Nanopoulos, and Yannis Manolopoulos. A unified framework for providing recommendations in social tagging systems based on ternary semantic analysis. IEEE Transactions on Knowledge and Data Engineering, 22(2), 2010.Google Scholar
  46. 46.
    L. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrik, pages 279–311, 1966.Google Scholar
  47. 47.
    P. Turney. Empirical evaluation of four tensor decomposition algorithms. Technical Report (NRC/ERB-1152), 2007.Google Scholar
  48. 48.
    HongchengWang and Narendra Ahuja. A tensor approximation approach to dimensionality reduction. Int. J. Comput. Vision, 76:217–229, March 2008.Google Scholar
  49. 49.
    Pengcheng Wu, Steven Chu-Hong Hoi, Peilin Zhao, and Ying He. Mining social images with distance metric learning for automated image tagging. In Proceedings of the fourth ACM international conference on Web search and data mining, WSDM ’11, pages 197–206, 2011.Google Scholar
  50. 50.
    Guandong Xu, Yanhui Gu, Peter Dolog, Yanchun Zhang, and Masaru Kitsuregawa. Semrec: A semantic enhancement framework for tag based recommendation. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI), 2011.Google Scholar
  51. 51.
    Nan Zheng and Qiudan Li. A recommender system based on tag and time information for social tagging systems. Expert Syst. Appl., 38:4575–4587, 2011.Google Scholar
  52. 52.
    Tom Chao Zhou, Hao Ma, Michael R. Lyu, and Irwin King. Userrec: A user recommendation framework in social tagging systems. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI), 2010.Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Leandro Balby Marinho
    • 1
    Email author
  • Andreas Hotho
    • 2
  • Robert Jäschke
    • 3
  • Alexandros Nanopoulos
    • 4
  • Steffen Rendle
    • 5
  • Lars Schmidt-Thieme
    • 4
  • Gerd Stumme
    • 3
  • Panagiotis Symeonidis
    • 6
  1. 1.Federal University of Campina GrandeCampina GrandeBrazil
  2. 2.University of WürzburgWürzburgGermany
  3. 3.University of KasselKasselGermany
  4. 4.University of HildesheimHildesheimGermany
  5. 5.University of KonstanzKonstanzGermany
  6. 6.Aristotle UniversityThessalonikiGreece

Personalised recommendations