Advertisement

Baseline Techniques

  • Leandro Balby Marinho
  • Andreas Hotho
  • Robert Jäschke
  • Alexandros Nanopoulos
  • Steffen Rendle
  • Lars Schmidt-Thieme
  • Gerd Stumme
  • Panagiotis Symeonidis
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

In this chapter we introduce the most basic techniques for recommendations in STS. Despite their simplicity, these methods are very easy to implement, cheap to compute, and have proven to attain reasonably good results; features that make them good alternatives to start with by anyone planning on deploying recommendation services in STS.

Keywords

Recommender System Target User Collaborative Filter Projection Matrice Probabilistic Latent Semantic Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Claudiu S. Firan, Wolfgang Nejdl, and Raluca Paiu. The benefit of using tag-based profiles. In LA-WEB ’07: Proceedings of the 2007 Latin American Web Conference, pages 32–41, Washington, DC, USA, 2007. IEEE Computer Society.Google Scholar
  2. 2.
    Jonathan Gemmell, Thomas Schimoler, Bamshad Mobasher, and Robin Burke. Hybrid tag recommendation for social annotation systems. In Proceedings of the 19th ACM international conference on Information and knowledge management, CIKM ’10, pages 829–838, New York, NY, USA, 2010. ACM.Google Scholar
  3. 3.
    Jon Herlocker, Joseph A. Konstan, and John Riedl. An empirical analysis of design choices in neighborhood based collaborative filtering algorithms. Inf. Retr., 5:287–310, October 2002.Google Scholar
  4. 4.
    Thomas Hofmann. Probabilistic latent semantic indexing. In SIGIR ’99: Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, pages 50–57, New York, NY, USA, 1999. ACM.Google Scholar
  5. 5.
    Robert Jäschke, Leandro Marinho, Andreas Hotho, Lars Schmidt- Thieme, and Gerd Stumme. Tag recommendations in social bookmarking systems. AI Communications, 21(4):231–247, 2008.Google Scholar
  6. 6.
    Robert Jäschke, Leandro Balby Marinho, Andreas Hotho, Lars Schmidt- Thieme, and Gerd Stumme. Tag recommendations in folksonomies. In Joost N. Kok, Jacek Koronacki, Ramon López de Mántaras, Stan Matwin, Dunja Mladenic, and Andrzej Skowron, editors, Knowledge Discovery in Databases: PKDD 2007, 11th European Conference on Principles and Practice of Knowledge Discovery in Databases, volume 4702 of Lecture Notes in Computer Science, pages 506–514, Berlin, Heidelberg, 2007. Springer.Google Scholar
  7. 7.
    Hinrich Schütze Christopher D. Manning. Introduction to Information Retrieval. ISBN 978-0-521-86571-5. Cambridge University Press, May 2008.Google Scholar
  8. 8.
    Leandro Balby Marinho and Lars Schmidt-Thieme. Collaborative tag recommendations. In GFKL ’07: Proceedings of the 31st Annual Conference of the Gesellschaft für Klassifikation (GfKl), Freiburg, pages 533–540. Springer, 2007.Google Scholar
  9. 9.
    Gilad Mishne. Autotag: A collaborative approach to automated tag assignment for weblog posts. In WWW ’06: Proceedings of the 15th International Conference on World Wide Web, pages 953–954, New York, NY, USA, 2006. ACM Press.Google Scholar
  10. 10.
    Jing Peng, Daniel Dajun Zeng, Huimin Zhao, and Fei-yue Wang. Collaborative filtering in social tagging systems based on joint item-tag recommendations. In Proceedings of the 19th ACM international conference on Information and knowledge management, CIKM ’10, pages 809–818, New York, NY, USA, 2010. ACM.Google Scholar
  11. 11.
    Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl. Grouplens: an open architecture for collaborative filtering of netnews. In CSCW ’94: Proceedings of the 1994 ACM conference on Computer supported cooperative work, pages 175–186, New York, NY, USA, 1994. ACM.Google Scholar
  12. 12.
    Denis P. Santander and Peter Brusilovsky. Improving Collaborative Filtering in Social Tagging Systems for the Recommendation of Scientific Articles. Web Intelligence and Intelligent Agent Technology, IEEE/WIC/ACM International Conference on, 1:136–142, 2010.Google Scholar
  13. 13.
    Shilad Sen, Jesse Vig, and John Riedl. Tagommenders: connecting users to items through tags. In Proceedings of the 18th international conference on World wide web, WWW ’09, pages 671–680, New York, NY, USA, 2009. ACM.Google Scholar
  14. 14.
    Sanjay Sood, Sara Owsley, Kristian Hammond, and Larry Birnbaum. Tagassist: Automatic tag suggestion for blog posts. In ICWSM ’07: Proceedings of the International Conference on Weblogs and Social Media, 2007.Google Scholar
  15. 15.
    Karen H. L. Tso-Sutter, Leandro Balby Marinho, and Lars Schmidt- Thieme. Tag-aware recommender systems by fusion of collaborative filtering algorithms. In SAC ’08: Proceedings of the 2008 ACM symposium on Applied computing, pages 1995–1999. ACM, 2008.Google Scholar
  16. 16.
    Robert Wetzker, Winfried Umbrath, and Alan Said. A hybrid approach to item recommendation in folksonomies. In ESAIR ’09: Proceedings of the WSDM ’09 Workshop on Exploiting Semantic Annotations in Information Retrieval, pages 25–29. ACM, 2009.Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Leandro Balby Marinho
    • 1
  • Andreas Hotho
    • 2
  • Robert Jäschke
    • 3
  • Alexandros Nanopoulos
    • 4
  • Steffen Rendle
    • 5
  • Lars Schmidt-Thieme
    • 4
  • Gerd Stumme
    • 3
  • Panagiotis Symeonidis
    • 6
  1. 1.Federal University of Campina GrandeCampina GrandeBrazil
  2. 2.University of WürzburgWürzburgGermany
  3. 3.University of KasselKasselGermany
  4. 4.University of HildesheimHildesheimGermany
  5. 5.University of KonstanzKonstanzGermany
  6. 6.Aristotle UniversityThessalonikiGreece

Personalised recommendations