Advertisement

Recommender Systems

  • Leandro Balby MarinhoEmail author
  • Andreas Hotho
  • Robert Jäschke
  • Alexandros Nanopoulos
  • Steffen Rendle
  • Lars Schmidt-Thieme
  • Gerd Stumme
  • Panagiotis Symeonidis
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

In the following we will describe systematically and formally the most important problems related to recommender systems and give some references to actual solutions. Our focus here is to describe the general recommender systems setting as a base for social recommender systems. See [11, 3] for a more general introduction to recommender systems and a more thorough overview of the state-of-the-art, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Adomavicius and Y. O Kwon. New recommendation techniques for multicriteria rating systems. IEEE Intelligent Systems, page 48–55, 2007.Google Scholar
  2. 2.
    G. Adomavicius and A. Tuzhilin. Multidimensional recommender systems: a data warehousing approach. Electronic Commerce, page 180–192, 2001.Google Scholar
  3. 3.
    G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of the-art and possible extensions. IEEE transactions on knowledge and data engineering, page 734–749, 2005.Google Scholar
  4. 4.
    G. Adomavicius and A. Tuzhilin. Context-aware recommender systems. In Proceedings of the 2008 ACM conference on Recommender systems RecSys 08, volume 16, 2008.Google Scholar
  5. 5.
    M. Balabanović and Y. Shoham. Fab: content-based, collaborative recommendation. Communications of the ACM, 40(3):66–72, 1997.CrossRefGoogle Scholar
  6. 6.
    E. J Candès and B. Recht. Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9(6):717–772, 2009.Google Scholar
  7. 7.
    D. Goldberg, D. Nichols, B. M Oki, and D. Terry. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12):61–70, 1992.Google Scholar
  8. 8.
    A. S Harpale and Y. Yang. Personalized active learning for collaborative filtering. In Proceedings of the 31 st annual international ACM SIGIR conference on Research and development in information retrieval, page 91–98, 2008.Google Scholar
  9. 9.
    T. Hofmann and J. Puzicha. Latent class models for collaborative filtering. In International Joint Conference on Artificial Intelligence, volume 16, page 688–693, 1999.Google Scholar
  10. 10.
    Thomas Hofmann. Latent semantic models for collaborative filtering. ACM Transactions on Information Systems, 22(1):89–115, January 2004.CrossRefGoogle Scholar
  11. 11.
    Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard Friedich. Recommender Systems: An Introduction. Cambridge University Press, 1 edition, September 2010.Google Scholar
  12. 12.
    A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver. Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In Proceedings of the fourth ACM conference on Recommender systems, page 79–86, 2010.Google Scholar
  13. 13.
    Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8):37, 30, 2009.Google Scholar
  14. 14.
    C. Lippert, S. H Weber, Y. Huang, V. Tresp, M. Schubert, and H. P Kriegel. Relation-prediction in multi relational domains using matrixfactorization. In NIPS Workshop: Structured Input-Structured Output, 2008.Google Scholar
  15. 15.
    Ulrich Paquet, Blaise Thomson, and Ole Winther. A hierarchical model for ordinal matrix factorization. Statistics and Computing, June 2011.Google Scholar
  16. 16.
    I. Pilászy and D. Tikk. Recommending new movies: even a few ratings are more valuable than metadata. In Proceedings of the third ACM conference on Recommender systems, page 93–100, 2009.Google Scholar
  17. 17.
    A. M Rashid, I. Albert, D. Cosley, S. K Lam, S. M McNee, J. A Konstan, and J. Riedl. Getting to know you: learning new user preferences in recommender systems. In Proceedings of the 7th international conference on Intelligent user interfaces, page 127–134, 2002.Google Scholar
  18. 18.
    Steffen Rendle. Context-Aware Ranking with Factorization Models. Springer Berlin Heidelberg, 1st edition, November 2010.Google Scholar
  19. 19.
    Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Schmidt- Thieme Lars. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings of the Twenty-Fifth Conference on Uncertainty Google Scholar
  20. 20.
    in Artificial Intelligence, UAI ’09, pages 452–461, Arlington, Virginia, United States, 2009. AUAI Press.Google Scholar
  21. 21.
    P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. GroupLens: an open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM conference on Computer supported cooperative work, page 175–186, 1994.Google Scholar
  22. 22.
    A. I Schein, A. Popescul, L. H Ungar, and D. M Pennock. Methods and metrics for cold-start recommendations. In Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, page 253–260, 2002.Google Scholar
  23. 23.
    L. Schmidt-Thieme. Compound classification models for recommender systems. In Fifth IEEE International Conference on Data Mining (ICDM’05), pages 378–385, Houston, TX, USA, 2005.Google Scholar
  24. 24.
    U. Shardanand and P. Maes. Social information filtering: algorithms for automating “word of mouth”. In Proceedings of the SIGCHI conference on Human factors in computing systems, page 210–217, 1995.Google Scholar
  25. 25.
    Ajit P. Singh and Geoffrey J. Gordon. Relational learning via collective matrix factorization. In Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 650–658, Las Vegas, Nevada, USA, 2008. ACMGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Leandro Balby Marinho
    • 1
    Email author
  • Andreas Hotho
    • 2
  • Robert Jäschke
    • 3
  • Alexandros Nanopoulos
    • 4
  • Steffen Rendle
    • 5
  • Lars Schmidt-Thieme
    • 4
  • Gerd Stumme
    • 3
  • Panagiotis Symeonidis
    • 6
  1. 1.Federal University of Campina GrandeCampina GrandeBrazil
  2. 2.University of WürzburgWürzburgGermany
  3. 3.University of KasselKasselGermany
  4. 4.University of HildesheimHildesheimGermany
  5. 5.University of KonstanzKonstanzGermany
  6. 6.Aristotle UniversityThessalonikiGreece

Personalised recommendations