Skip to main content

HPV and Cervical Cancer

  • Chapter
  • First Online:
  • 1658 Accesses

Abstract

About 15% of all human cancers are caused by viruses; human papillomaviruses (HPV) only are responsible for at least 5% of tumors worldwide. All cervical cancers can be linked to high-risk HPV infections which accounts for about 10% of female cancers in developing countries. Moreover a significant proportion of cancers arising in other anatomical locations are attributed to HPV. The transformation mechanism of certain HPVs is attributed to the pleiotropic effects of two viral oncoproteins, E6 and E7, the continuous expression of which is required for cell transformation. These proteins prevent keratinocytes senescence and can extend their life span and block terminal differentiation promoting the accumulation of mitotic defects, genomic instability, and neoplasia. Tumors arise several years after exposure to the virus which is a clear indication that other factors operate during different stages of tumor development, which include in large proportion the immune responses affecting both the virus and the infected individual. The very high negative predictive value of HPV testing speaks in favor of its use in screening of cervical cancer to reduce the mortality related to this neoplasia particularly in developing countries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BPV:

Bovine papillomavirus

CIN:

Cervical intraepithelial neoplasia

DNA:

Deoxyribonucleic acid

EGFR:

Epidermal growth factor receptor

HDAC:

Histone deacetylase

HPV:

Human papillomavirus

LCR:

Long control region

MHC:

Major histocompatibility complex

mRNA:

Messenger ribonucleic acid

PV:

Papillomavirus

VLP:

Virus-like particles

WHO:

World Health Organization

References

  1. Pisani P. The cancer burden and cancer control in developing countries. Environ Health. 2011;10 Suppl 1:S2.

    PubMed  Google Scholar 

  2. Parkin DM, Bray F. Chapter 2: The burden of HPV-related cancers. Vaccine. 2006;24 Suppl 3:S3/11–25.

    Google Scholar 

  3. Bruni L, Diaz M, Castellsagué X, Ferrer E, Bosch FX, de Sanjosé S. Cervical human papillomavirus prevalence in 5 continents: meta-analysis of 1 million women with normal cytological findings. J Infect Dis. 2010;202(12):1789–99.

    PubMed  Google Scholar 

  4. Bosch FX, Manos MM, Muñoz N, Sherman M, Jansen AM, Peto J, et al. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst. 1995;87(11):796–802.

    PubMed  CAS  Google Scholar 

  5. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–9.

    PubMed  CAS  Google Scholar 

  6. Guan P, Howell-Jones R, Li N, Bruni L, de Sanjosé S, Franceschi S, et al. Human papillomavirus types in 115,789 HPV-positive women: a meta-analysis from cervical infection to cancer. Int J Cancer. 2012;131(10):2349–59.

    PubMed  CAS  Google Scholar 

  7. Smith JS, Melendy A, Rana RK, Pimenta JM. Age-specific prevalence of infection with human papillomavirus in females: a global review. J Adolesc Health. 2008;43(4 Suppl):S5–25; S25.e1–41.

    Google Scholar 

  8. Thomas JO, Herrero R, Omigbodun AA, Ojemakinde K, Ajayi IO, Fawole A, et al. Prevalence of papillomavirus infection in women in Ibadan, Nigeria: a population-based study. Br J Cancer. 2004;90(3):638–45.

    PubMed  CAS  Google Scholar 

  9. Herrero R, Castle PE, Schiffman M, et al. Epidemiologic profile of type-specific human papillomavirus infection and cervical neoplasia in Guanacaste, Costa Rica. J Infect Dis. 2005;191(11):1796–807.

    PubMed  Google Scholar 

  10. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Lyon, Inc. 2007;90:689.

    Google Scholar 

  11. Van der Marel J, Quint WG, Schiffman M, van de Sandt MM, Zuna RE, Terence Dunn S, et al. Molecular mapping of high-grade cervical intraepithelial neoplasia shows etiological dominance of HPV16. Int J Cancer. 2012;131(6):E946–53.

    PubMed  Google Scholar 

  12. Bauer HM, Ting Y, Greer CE, Chambers JC, Tashiro CJ, Chimera J, et al. Genital human papillomavirus infection in female university students as determined by a PCR-based method. JAMA. 1991;265(4):472–7.

    PubMed  CAS  Google Scholar 

  13. Tota JE, Chevarie-Davis M, Richardson LA, Devries M, Franco EL. Epidemiology and burden of HPV infection and related diseases: implications for prevention strategies. Prev Med. 2011;53 Suppl 1:S12–21.

    PubMed  Google Scholar 

  14. Muñoz N, Bosch FX, Castellsagué X, Díaz M, de Sanjose S, Hammouda D, et al. Against which human papillomavirus types shall we vaccinate and screen? The international perspective. Int J Cancer. 2004;111(2):278–85.

    PubMed  Google Scholar 

  15. Richardson H, Kelsall G, Tellier P, Voyer H, Abrahamowicz M, Ferenczy A, et al. The natural history of type-specific human papillomavirus infections in female university students. Cancer Epidemiol Biomarkers Prev. 2003;12(6):485–90.

    PubMed  Google Scholar 

  16. Bosch FX, Muñoz N, de Sanjosé S, Guerrerro E, Gaffari AM, Kaldor J, et al. Importance of human papillomavirus endemicity in the incidence of cervical cancer: an extension of the hypothesis on sexual behavior. Cancer Epidemiol Biomarkers Prev. 1994;3(5):375–9.

    PubMed  CAS  Google Scholar 

  17. Castellsagué X, Gaffari A, Daniel RW, Bosch FX, Muñoz N, Shah KV. Prevalence of penile human papillomavirus DNA in husbands of women with and without cervical neoplasia: a study in Spain and Colombia. J Infect Dis. 1997;176(2):353–61.

    PubMed  Google Scholar 

  18. de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H. Classification of papillomaviruses. Virology. 2004;324(1):17–27.

    PubMed  Google Scholar 

  19. zur Hausen H, Meinhof W, Scheiber W, Bornkamm GW. Attempts to detect virus-secific DNA in human tumors. I. Nucleic acid hybridizations with complementary RNA of human wart virus. Int J Cancer. 1974;13(5):650–6.

    PubMed  CAS  Google Scholar 

  20. Franco EL, Harper DM. Vaccination against human papillomavirus infection: a new paradigm in cervical cancer control. Vaccine. 2005;23(17–18):2388–94.

    PubMed  CAS  Google Scholar 

  21. Schiffman MH, Bauer HM, Hoover RN, Glass AG, Cadell DM, Rush BB, et al. Epidemiologic evidence showing that human papillomavirus infection causes most cervical intraepithelial neoplasia. J Natl Cancer Inst. 1993;85(12):958–64.

    PubMed  CAS  Google Scholar 

  22. Franco EL, Villa LL, Ruiz A, Costa MC. Transmission of cervical human papillomavirus infection by sexual activity: differences between low and high oncogenic risk types. J Infect Dis. 1995;172(3):756–63.

    PubMed  CAS  Google Scholar 

  23. Baseman JG, Koutsky LA. The epidemiology of human papillomavirus infections. J Clin Virol. 2005;32 Suppl 1:S16–24.

    PubMed  Google Scholar 

  24. Burchell AN, Richardson H, Mahmud SM, et al. Modeling the sexual transmissibility of human papillomavirus infection using stochastic computer simulation and empirical data from a cohort study of young women in Montreal, Canada. Am J Epidemiol. 2006;163(6):534–43.

    PubMed  Google Scholar 

  25. Moscicki AB, Hills N, Shiboski S, et al. Risks for incident human papillomavirus infection and low-grade squamous intraepithelial lesion development in young females. JAMA. 2001;285(23):2995–3002.

    PubMed  CAS  Google Scholar 

  26. Hernandez BY, Wilkens LR, Zhu X, et al. Transmission of human papillomavirus in heterosexual couples. Emerg Infect Dis. 2008;14(6):888–94.

    PubMed  Google Scholar 

  27. Rousseau MC, Pereira JS, Prado JC, Villa LL, Rohan TE, Franco EL. Cervical coinfection with human papillomavirus (HPV) types as a predictor of acquisition and persistence of HPV infection. J Infect Dis. 2001;184(12):1508–17.

    PubMed  CAS  Google Scholar 

  28. Schiffman M, Kjaer SK. Chapter 2: Natural history of anogenital human papillomavirus infection and neoplasia. J Natl Cancer Inst Monogr. 2003;31:14–9.

    PubMed  Google Scholar 

  29. Castellsagué X, Bosch FX, Muñoz N, Meijer CJ, Shah KV, de Sanjose S, et al. Male circumcision, penile human papillomavirus infection, and cervical cancer in female partners. N Engl J Med. 2002;346(15):1105–12.

    PubMed  Google Scholar 

  30. Baken LA, Koutsky LA, Kuypers J, Kosorok MR, Lee SK, Kiviat NB, et al. Genital human papillomavirus infection among male and female sex partners: prevalence and type-specific concordance. J Infect Dis. 1995;171(2):429–32.

    PubMed  CAS  Google Scholar 

  31. Shah K, Kashima H, Polk BF, Shah F, Abbey H, Abramson A. Rarity of cesarean delivery in cases of juvenile-onset respiratory papillomatosis. Obstet Gynecol. 1986;68(6):795–9.

    PubMed  CAS  Google Scholar 

  32. Rousseau MC, Franco EL, Villa LL, Sobrinho JP, Termini L, Prado JM, et al. A cumulative case–control study of risk factor profiles for oncogenic and nononcogenic cervical human papillomavirus infections. Cancer Epidemiol Biomarkers Prev. 2000;9(5):469–76.

    PubMed  CAS  Google Scholar 

  33. Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human papillomavirus and cervical cancer. Lancet. 2007;370(9590):890–907.

    PubMed  CAS  Google Scholar 

  34. Vuyst HD, Ndirangu G, Moodley M, Tenet V, Estambale B, Meijer CJ, et al. Prevalence of human papillomavirus in women with invasive cervical carcinoma by HIV status in Kenya and South Africa. Int J Cancer. 2012;131(4):949–55.

    PubMed  Google Scholar 

  35. Palefsky J. Human papillomavirus-related disease in people with HIV. Curr Opin HIV AIDS. 2009;4(1):52–6.

    PubMed  Google Scholar 

  36. Hildesheim A, Schiffman MH, Gravitt PE, Glass AG, Greer CE, Zhang T, et al. Persistence of type-specific human papillomavirus infection among cytologically normal women. J Infect Dis. 1994;169(2):235–40.

    PubMed  CAS  Google Scholar 

  37. Franco EL, Villa LL, Sobrinho JP, Prado JM, Rousseau MC, Désy M, et al. Epidemiology of acquisition and clearance of cervical human papillomavirus infection in women from a high-risk area for cervical cancer. J Infect Dis. 1999;180(5):1415–23.

    PubMed  CAS  Google Scholar 

  38. Evander M, Edlund K, Gustafsson A, Jonsson M, Karlsson R, Rylander E, et al. Human papillomavirus infection is transient in young women: a population-based cohort study. J Infect Dis. 1995;171(4):1026–30.

    PubMed  CAS  Google Scholar 

  39. Ho GY, Burk RD, Klein S, Kadish AS, Chang CJ, Palan P, et al. Persistent genital human papillomavirus infection as a risk factor for persistent cervical dysplasia. J Natl Cancer Inst. 1995;87(18):1365–71.

    PubMed  CAS  Google Scholar 

  40. Gravitt PE. The known unknowns of HPV natural history. J Clin Invest. 2011;121(12):4593–9.

    PubMed  CAS  Google Scholar 

  41. Schiffman M, Rodriguez AC, Chen Z, Wacholder S, Herrero R, Hildesheim A, et al. A population-based prospective study of carcinogenic human papillomavirus variant lineages, viral persistence, and cervical neoplasia. Cancer Res. 2010;70(8):3159–69.

    PubMed  CAS  Google Scholar 

  42. Nobbenhuis MA, Walboomers JM, Helmerhorst TJ, Rozendaal L, Remmink AJ, Risse EK, et al. Relation of human papillomavirus status to cervical lesions and consequences for cervical-cancer screening: a prospective study. Lancet. 1999;354(9172):20–5.

    PubMed  CAS  Google Scholar 

  43. Richart RM. A theory of cervical carcinogenesis. Obstet Gynecol Surv. 1969;24(7 Pt 2):874–9.

    PubMed  CAS  Google Scholar 

  44. Cuzick J, Szarewski A, Terry G, Ho L, Hanby A, Maddox P, et al. Human papillomavirus testing in primary cervical screening. Lancet. 1995;345(8964):1533–6.

    PubMed  CAS  Google Scholar 

  45. Koutsky LA, Holmes KK, Critchlow CW, Stevens CE, Paavonen J, Beckmann AM, et al. A cohort study of the risk of cervical intraepithelial neoplasia grade 2 or 3 in relation to papillomavirus infection. N Engl J Med. 1992;327(18):1272–8.

    PubMed  CAS  Google Scholar 

  46. Wang SS, Hildesheim A. Chapter 5: Viral and host factors in human papillomavirus persistence and progression. J Natl Cancer Inst Monogr. 2003;31:35–40.

    PubMed  CAS  Google Scholar 

  47. Stanley M. Immune responses to human papillomavirus. Vaccine. 2006;24 Suppl 1:S16–22.

    PubMed  Google Scholar 

  48. Sichero L, Ferreira S, Trottier H, Duarte-Franco E, Ferenczy A, Franco EL, et al. High grade cervical lesions are caused preferentially by non-European variants of HPVs 16 and 18. Int J Cancer. 2007;120(8):1763–8.

    PubMed  CAS  Google Scholar 

  49. Schlecht NF, Trevisan A, Duarte-Franco E, Rohan TE, Ferenczy A, Villa LL, et al. Viral load as a predictor of the risk of cervical intraepithelial neoplasia. Int J Cancer. 2003;103(4):519–24.

    PubMed  CAS  Google Scholar 

  50. Apple RJ, Erlich HA, Klitz W, Manos MM, Becker TM, Wheeler CM. HLA DR-DQ associations with cervical carcinoma show papillomavirus-type specificity. Nat Genet. 1994;6(2):157–62.

    PubMed  CAS  Google Scholar 

  51. Maciag PC, Schlecht NF, Souza PS, Franco EL, Villa LL, Petzl-Erler ML. Major histocompatibility complex class II polymorphisms and risk of cervical cancer and human papillomavirus infection in Brazilian women. Cancer Epidemiol Biomarkers Prev. 2000;9(11):1183–91.

    PubMed  CAS  Google Scholar 

  52. de Villiers EM. Relationship between steroid hormone contraceptives and HPV, cervical intraepithelial neoplasia and cervical carcinoma. Int J Cancer. 2003;103(6):705–8.

    PubMed  Google Scholar 

  53. Chen EY, Howley PM, Levinson AD, Seeburg PH. The primary structure and genetic organization of the bovine papillomavirus type 1 genome. Nature. 1982;299(5883):529–34.

    PubMed  CAS  Google Scholar 

  54. O’Connor M, Chan SY, Bernard HU. Transcription factor binding sites in the LCR of genital HPVs. In: Myers G et al., editors. Human papillomaviruses. A compilation and analysis of nucleic acid and aminoacid sequences, III. Los Alamos: Los Alamos National Laboratory; 1995. p. 21–41.

    Google Scholar 

  55. Thierry F, Yaniv M. The BPV1-E2 trans-acting protein can be either an activator or a repressor of the HPV18 regulatory region. EMBO J. 1987;6(11):3391–7.

    PubMed  CAS  Google Scholar 

  56. Gloss B, Bernard HU, Seedorf K, Klock G. The upstream regulatory region of the human papilloma virus-16 contains an E2 protein-independent enhancer which is specific for cervical carcinoma cells and regulated by glucocorticoid hormones. EMBO J. 1987;6(12):3735–43.

    PubMed  CAS  Google Scholar 

  57. Thierry F, Spyrou G, Yaniv M, Howley P. Two AP1 sites binding JunB are essential for human papillomavirus type 18 transcription in keratinocytes. J Virol. 1992;66(6):3740–8.

    PubMed  CAS  Google Scholar 

  58. Sichero L, Sobrinho JS, Villa LL. Identification of novel cellular transcription factors that regulate HPVs 18 and 16 early promoters. J Infect Dis. 2012;206(6):867–74.

    PubMed  CAS  Google Scholar 

  59. Chan WK, Klock G, Bernard HU. Progesterone and glucocorticoid response elements occur in the long control regions of several human papillomaviruses involved in anogenital neoplasia. J Virol. 1989;63(8):3261–9.

    PubMed  CAS  Google Scholar 

  60. Bonne-Andrea C, Santucci S, Clertant P, Tillier F. Bovine papillomavirus E1 protein binds specifically DNA polymerase alpha but not replication protein A. J Virol. 1995;69(4):2341–50.

    PubMed  CAS  Google Scholar 

  61. Wilson VG, West M, Woytek K, Rangasamy D. Papillomavirus E1 proteins: form, function, and features. Virus Genes. 2002;24(3):275–90.

    PubMed  CAS  Google Scholar 

  62. Chiang CM, Ustav M, Stenlund A, Ho TF, Broker TR, Chow LT. Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins. Proc Natl Acad Sci U S A. 1992;89(13):5799–803.

    PubMed  CAS  Google Scholar 

  63. van Tine BA, Dao LD, Wu SY, Sonbuchner TM, Lin BY, Zou N, et al. Human papillomavirus (HPV) origin-binding protein associates with mitotic spindles to enable viral DNA partitioning. Proc Natl Acad Sci U S A. 2004;101(12):4030–5.

    PubMed  Google Scholar 

  64. zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2(5):342–50.

    PubMed  CAS  Google Scholar 

  65. DiMaio D, Mattoon D. Mechanisms of cell transformation by papillomavirus E5 proteins. Oncogene. 2001;20(54):7866–73.

    PubMed  CAS  Google Scholar 

  66. Leechanachai P, Banks L, Moreau F, Matlashewski G. The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene. 1992;7(1):19–25.

    PubMed  CAS  Google Scholar 

  67. Conrad M, Bubb VJ, Schlegel R. The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein. J Virol. 1993;67(10):6170–8.

    PubMed  CAS  Google Scholar 

  68. Crusius K, Rodriguez I, Alonso A. The human papillomavirus type 16 E5 protein modulates ERK1/2 and p38 MAP kinase activation by an EGFR-independent process in stressed human keratinocytes. Virus Genes. 2000;20(1):65–9.

    PubMed  CAS  Google Scholar 

  69. Stöppler MC, Straight SW, Tsao G, Schlegel R, McCance DJ. The E5 gene of HPV-16 enhances keratinocyte immortalization by full-length DNA. Virology. 1996;223(1):251–4.

    PubMed  Google Scholar 

  70. Ashrafi GH, Brown DR, Fife KH, Campo MS. Down-regulation of MHC class I is a property common to papillomavirus E5 proteins. Virus Res. 2006;120(1–2):208–11.

    PubMed  CAS  Google Scholar 

  71. Longworth MS, Laimins LA. Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev. 2004;68(2):362–72.

    PubMed  CAS  Google Scholar 

  72. Huibregtse JM, Scheffner M, Howley PM. Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol Cell Biol. 1993;13(8):4918–27.

    PubMed  CAS  Google Scholar 

  73. Kiyono T, Hiraiwa A, Fujita M, Hayashi Y, Akiyama T, Ishibashi M. Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci U S A. 1997;94(21):11612–6.

    PubMed  CAS  Google Scholar 

  74. Pim D, Banks L. Interaction of viral oncoproteins with cellular target molecules: infection with high-risk vs low-risk human papillomaviruses. APMIS. 2010;118(6–7):471–93.

    PubMed  CAS  Google Scholar 

  75. Patel D, Huang SM, Baglia LA, McCance DJ. The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J. 1999;18(18):5061–72.

    PubMed  CAS  Google Scholar 

  76. Tong X, Howley PM. The bovine papillomavirus E6 oncoprotein interacts with paxillin and disrupts the actin cytoskeleton. Proc Natl Acad Sci U S A. 1997;94(9):4412–7.

    PubMed  CAS  Google Scholar 

  77. Klingelhutz AJ, Foster SA, McDougall JK. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature. 1996;380(6569):79–82.

    PubMed  CAS  Google Scholar 

  78. Oh ST, Kyo S, Laimins LA. Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J Virol. 2001;75(12):5559–66.

    PubMed  CAS  Google Scholar 

  79. Dyson N, Guida P, Münger K, Harlow E. Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular proteins. J Virol. 1992;66(12):6893–902.

    PubMed  CAS  Google Scholar 

  80. Münger K, Howley PM. Human papillomavirus immortalization and transformation functions. Virus Res. 2002;89(2):213–28.

    PubMed  Google Scholar 

  81. Zerfass K, Schulze A, Spitkovsky D, Friedman V, Henglein B, Jansen-Dürr P. Sequential activation of cyclin E and cyclin A gene expression by human papillomavirus type 16 E7 through sequences necessary for transformation. J Virol. 1995;69(10):6389–99.

    PubMed  CAS  Google Scholar 

  82. Duensing S, Duensing A, Flores ER, Do A, Lambert PF, Münger K. Centrosome abnormalities and genomic instability by episomal expression of human papillomavirus type 16 in raft cultures of human keratinocytes. J Virol. 2001;75(16):7712–6.

    PubMed  CAS  Google Scholar 

  83. Klaes R, Friedrich T, Spitkovsky D, Ridder R, Rudy W, Petry U, et al. Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer. 2001;92(2):276–84.

    PubMed  CAS  Google Scholar 

  84. Kirnbauer R, Taub J, Greenstone H, Roden R, Dürst M, Gissmann L, et al. Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles. J Virol. 1993;67(12):6929–36.

    PubMed  CAS  Google Scholar 

  85. Galloway DA. Papillomavirus vaccines in clinical trials. Lancet Infect Dis. 2003;3(8):469–75.

    PubMed  CAS  Google Scholar 

  86. Gissman L, zur Hausen. Human papillomaviruses: physical mapping and genetic heterogeneity. Proc Natl Acad Sci U S A. 1976;73:1310–3.

    Google Scholar 

  87. Bernard HU. The clinical importance of the nomenclature, evolution and taxonomy of human papillomaviruses. J Clin Virol. 2005;32 Suppl 1:S1–6.

    PubMed  Google Scholar 

  88. Chen Z, Terai M, Fu L, Herrero R, DeSalle R, Burk RD. Diversifying selection in human papillomavirus type 16 lineages based on complete genome analyses. J Virol. 2005;79(11):7014–23.

    PubMed  CAS  Google Scholar 

  89. Ho L, Chan SY, Burk RD, Das BC, Fujinaga K, Icenogle JP, et al. The genetic drift of human papillomavirus type 16 is a means of reconstructing ­prehistoric viral spread and the movement of ancient human populations. J Virol. 1993;67(11):6413–23.

    PubMed  CAS  Google Scholar 

  90. Smith B, Chen Z, Reimers L, van Doorslaer K, Schiffman M, Desalle R, et al. Sequence imputation of HPV16 genomes for genetic association studies. PLoS One. 2011;6(6):e21375.

    PubMed  CAS  Google Scholar 

  91. Ong CK, Chan SY, Campo MS, Fujinaga K, Mavromara-Nazos P, Labropoulou V, et al. Evolution of human papillomavirus type 18: an ancient phylogenetic root in Africa and intratype diversity reflect coevolution with human ethnic groups. J Virol. 1993;67(11):6424–31.

    PubMed  CAS  Google Scholar 

  92. Heinzel PA, Chan SY, Ho L, O’Connor M, Balaram P, Campo MS, et al. Variation of human papillomavirus type 6 (HPV-6) and HPV-11 genomes sampled throughout the world. J Clin Microbiol. 1995;33(7):1746–54.

    PubMed  CAS  Google Scholar 

  93. Burk RD, Chen Z, Harari A, Smith BC, Kocjan BJ, Maver PJ, et al. Classification and nomenclature system for human Alphapapillomavirus variants: general features, nucleotide landmarks and assignment of HPV6 and HPV11 isolates to variant lineages. Acta Dermatovenerol Alp Panonica Adriat. 2011;20(3):113–23.

    PubMed  Google Scholar 

  94. Deau MC, Favre M, Orth G. Genetic heterogeneity among human papillomaviruses (HPV) associated with epidermodysplasia verruciformis: evidence for multiple allelic forms of HPV5 and HPV8 E6 genes. Virology. 1991;184(2):492–503.

    PubMed  CAS  Google Scholar 

  95. Prado JC, Calleja-Macias IE, Bernard HU, Kalantari M, Macay SA, Allan B, et al. Worldwide genomic diversity of the human papillomaviruses-53, 56, and 66, a group of high-risk HPVs unrelated to HPV-16 and HPV-18. Virology. 2005;340(1):95–104.

    PubMed  CAS  Google Scholar 

  96. Calleja-Macias IE, Kalantari M, Huh J, Ortiz-Lopez R, Rojas-Martinez A, Gonzalez-Guerrero JF, et al. Genomic diversity of human papillomavirus-16, 18, 31, and 35 isolates in a Mexican population and relationship to European, African, and Native American variants. Virology. 2004;319(2):315–23.

    PubMed  CAS  Google Scholar 

  97. Schiffman M, Clifford G, Buonaguro FM. Classification of weakly carcinogenic human papillomavirus types: addressing the limits of epidemiology at the borderline. Infect Agent Cancer. 2009;4:8.

    PubMed  Google Scholar 

  98. Schiller JT, Day PM, Kines RC. Current understanding of the mechanism of HPV infection. Gynecol Oncol. 2010;118(1 Suppl):S12–7.

    PubMed  CAS  Google Scholar 

  99. Kines RC, Thompson CD, Lowy DR, Schiller JT, Day PM. The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc Natl Acad Sci U S A. 2009;106(48):20458–63.

    PubMed  CAS  Google Scholar 

  100. Day PM, Gambhira R, Roden RB, Lowy DR, Schiller JT. Mechanisms of human papillomavirus type 16 neutralization by l2 cross-neutralizing and l1 type-specific antibodies. J Virol. 2008;82(9):4638–46.

    PubMed  CAS  Google Scholar 

  101. Flores ER, Allen-Hoffmann BL, Lee D, Sattler CA, Lambert PF. Establishment of the human papillomavirus type 16 (HPV-16) life cycle in an immortalized human foreskin keratinocyte cell line. Virology. 1999;262(2):344–54.

    PubMed  CAS  Google Scholar 

  102. Delvenne P, Hubert P, Jacobs N, Giannini SL, Havard L, Renard I, et al. The organotypic culture of HPV-transformed keratinocytes: an effective in vitro model for the development of new immunotherapeutic approaches for mucosal (pre)neoplastic lesions. Vaccine. 2001;19(17–19):2557–64.

    PubMed  CAS  Google Scholar 

  103. Wentzensen N, Wilz B, Findeisen P, Wagner R, Dippold W, von Knebel Doeberitz M, et al. Identification of differentially expressed genes in colorectal adenoma compared to normal tissue by suppression subtractive hybridization. Int J Oncol. 2004;24(4):987–94.

    PubMed  CAS  Google Scholar 

  104. Jeon S, Lambert PF. Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc Natl Acad Sci U S A. 1995;92(5):1654–8.

    PubMed  CAS  Google Scholar 

  105. Kanda T, Furuno A, Yoshiike K. Human papillomavirus type 16 open reading frame E7 encodes a transforming gene for rat 3Y1 cells. J Virol. 1988;62(2):610–3.

    PubMed  CAS  Google Scholar 

  106. Storey A, Pim D, Murray A, Osborn K, Banks L, Crawford L. Comparison of the in vitro transforming activities of human papillomavirus types. EMBO J. 1988;7(6):1815–20.

    PubMed  CAS  Google Scholar 

  107. Sedman SA, Barbosa MS, Vass WC, Hubbert NL, Haas JA, Lowy DR, et al. The full-length E6 protein of human papillomavirus type 16 has transforming and trans-activating activities and cooperates with E7 to immortalize keratinocytes in culture. J Virol. 1991;65(9):4860–6.

    PubMed  CAS  Google Scholar 

  108. Band V, De Caprio JA, Delmolino L, Kulesa V, Sager R. Loss of p53 protein in human papillomavirus type 16 E6-immortalized human mammary epithelial cells. J Virol. 1991;65(12):6671–6.

    PubMed  CAS  Google Scholar 

  109. Barbosa MS, Schlegel R. The E6 and E7 genes of HPV-18 are sufficient for inducing two-stage in vitro transformation of human keratinocytes. Oncogene. 1989;4(12):1529–32.

    PubMed  CAS  Google Scholar 

  110. Hawley-Nelson P, Vousden KH, Hubbert NL, Lowy DR, Schiller JT. HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J. 1989;8(12):3905–10.

    PubMed  CAS  Google Scholar 

  111. Münger K, Phelps WC, Bubb V, Howley PM, Schlegel R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol. 1989;63(10):4417–21.

    PubMed  Google Scholar 

  112. Korzeniewski N, Spardy N, Duensing A, Duensing S. Genomic instability and cancer: lessons learned from human papillomaviruses. Cancer Lett. 2011;305(2):113–22.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Sichero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sichero, L., Villa, L.L. (2013). HPV and Cervical Cancer. In: Shetty, M. (eds) Breast and Gynecological Cancers. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1876-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1876-4_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1875-7

  • Online ISBN: 978-1-4614-1876-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics