Skip to main content

Localization and Mapping Corrections

  • Chapter
  • First Online:
Geolocation Techniques
  • 1765 Accesses

Abstract

Chapter 9 gives an overview of localization and mapping with a focus on near real-time implementation. We look at sensors that provide information about the environment (allothetic) and that aid us in creating a map of what is around us. The created map is also used for localization. This classic problem of simultaneous localization and mapping (SLAM) requires fusion of information from idiothetic and allothetic sensors. The basic idea of SLAM is that if the sensor and algorithms can identify a landmark and a location of that landmark relative to tracked subject, then any time that landmark is seen again, its location can be used to correct the tracked subject’s location. We discuss a small set of environmental sensors that can be used in SLAM algorithms including optical, magnetometer an inertial and discuss how features are selected. We give an overview of approaches to solving the SLAM problem and then show some results of a particular implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Feature tracking can also be used to directly solve for the resulting motion of a sensor if enough information is gathered to infer the relative movement of features in a metric map as a result of the subject motion, for example, stereo camera feature tracking.

  2. 2.

    http://pdf1.alldatasheet.com/datasheet-pdf/view/205144/YAMAHA/YAS529.html.

  3. 3.

    The subjects walked close to the center of the hallways during these tests at constant speed.

  4. 4.

    The Cramer Rao Lower Bound (CRLB) gives smallest variance achievable by an unbiased estimate.

  5. 5.

    This assumes traveling in a straight line track without wheel slip.

References

  • A.E. Abdel-Hakim, A.A. Farag, in CSIFT: A SIFT Descriptor with color invariant characteristics. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2006)

    Google Scholar 

  • A. Bandyopadhyay, D. Hakim et al., System and method for determining location of personnel and/or assets both indoors and outdoors via map generation and/or map matching techniques. USPTO. US, TRX Systems. Utility (2008)

    Google Scholar 

  • H. Bay, A. Ess et al., SURF: Speeded up robust features. Comput. Vis. Image Underst. (CVIU) 110(3), 346–359 (2008)

    Article  Google Scholar 

  • H. Bay, T. Tuytelaars et al., SURF: Speeded Up Robust Features. ECCV (2006)

    Google Scholar 

  • J. Borenstein, Heading Error Removal System for Tracking Devices USPTO, University of Michigan. US 2010/0256939 Al (2010)

    Google Scholar 

  • G. Dissanayake, P. Newman et al., A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans. Robot. Autom. 17(3), 229–241 (2001)

    Article  Google Scholar 

  • H. Durrant-Whyte, Uncertain geometry in robotics. IEEE J. Robot. Autom. 4(1), 23–31 (1988)

    Article  Google Scholar 

  • H. Durrant-Whyte, T. Bailey, Simultaneous Localization and Mapping: Part I. IEEE Robotics & Automation Magazine (June): 99–108 (2006a)

    Google Scholar 

  • H. Durrant-Whyte, T. Bailey Simultaneous Localization and Mapping (SLAM): Part II. IEEE Robotics & Automation Magazine (September): 108–117 (2006b)

    Google Scholar 

  • P. Elinas, R. Sim et al., in σSLAM: Stereo vision SLAM using the Rao-Blackwellised particle filter and a novel mixture proposal distribution. International Conference on Robotics and Automation, Orlando, Florida, IEEE (2006)

    Google Scholar 

  • D. Filliat, J.-A. Meyer, Map-based navigation in mobile robots: I. a review of localization strategies. Cog. Sys. Res. 4(4), 243–282 (2003)

    Article  Google Scholar 

  • B. Funk, A. Bandyopadhyay et al., Method and system for locating and monitoring first responders. USPTO. US, TRX Systems. 0077326, (2007)

    Google Scholar 

  • J.E. Guivant, E.M. Nebot, Optimization of the simultaneous localization and map-building algorithm for real-time implementation. IEEE Trans. Robot. Automat. 17(3), 242–257 (2001)

    Article  Google Scholar 

  • F. Gustafsson, F. Gunnarsson et al., Particle filters for positioning, navigation and tracking. IEEE Trans. Signal Process. 50(2), 425–437 (2002)

    Google Scholar 

  • F.R. Hampel, E.M. Ronchetti et al., Robust Statistics: The Approach Based on Influence Functions (Wiley, New York, 1986)

    MATH  Google Scholar 

  • C. Harris, M. Stephens, in A Combined Corner and Edge Detector. Proceedings of the 4th Alvey Vision Conference (1988)

    Google Scholar 

  • V. Indelman, S. Williams et al., in Factor graph based incremental smoothing in inertial navigation systems. International Conferences on Information Fusion (2012)

    Google Scholar 

  • M. Kaess, S. Williams et al., in Concurrent Filtering and Smoothing. International Conference on Information Fusion (2012)

    Google Scholar 

  • T. Kailath, Linear Systems (Prentice Hall, Englewood Cliffs, 1980)

    MATH  Google Scholar 

  • J. Karvounis, Theory, Design, and Implementation of Landmark Promotion Cooperative Simultaneous Localization and Mapping. Electrical and Computer Engineering. College Park, University of Maryland. Ph.D (2011a)

    Google Scholar 

  • J. Karvounis, Robust Kalman Filter. Joint Navigation Conference. Colorado Springs, CO, ION, (2011b)

    Google Scholar 

  • J. Karvounis, Theory, Design, and Implementation of Landmark Promotion Cooperative Simultaneous Localization and Mapping. US—Provisional Patent, TRX. Provisional (2011c)

    Google Scholar 

  • J. Kim, S. Sukkarieh, in Improving the Real-Time Efficiency of Inertial SLAM and Understanding its Observability. International Conference on Intelligent Robots and Systems, Sendai, Japan, (2004)

    Google Scholar 

  • D. Koller, N. Friedman, Probabilistic Graphical Models: Principles and Techniques (Adaptive Computation and Machine Learning series), (MIT Press, Cambridge 2009)

    Google Scholar 

  • T. Lemaire, S. Lacroix, SLAM with panoramic vision. J. Field Robot. 24(1–2), 91–111 (2007)

    Article  MATH  Google Scholar 

  • T. Lindeberg, Feature detection with automatic scale selection. IJCV 30(2), 79–116 (1998)

    Article  Google Scholar 

  • H.-A. Loeliger, An Introduction to Factor Graphs. IEEE Signal Processing Magazine (2004)

    Google Scholar 

  • D.G. Lowe, in Object recognition from local scale-invariant features. International Conference on Computer Vision, (1999)

    Google Scholar 

  • D.G. Lowe, Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  • J.-A. Meyer, D. Filliat, Map-based navigation in mobile robots: II. A review of map-learning and path-planning strategies. Cog. Sys. Res. 4(4), 283–317 (2003)

    Article  Google Scholar 

  • J.V. Miro, G. Dissanayake, et al., Vision-based SLAM using natural features in indoor environments. Intelligent Sensors, Sensor Networks and Information Processing Conference, IEEE, (2005)

    Google Scholar 

  • M. Montemerlo, S. Thrun, in Simultaneous Localization and Mapping with Unknown Data Association using Fast SLAM. Proceedings of the IEEE International Joint Conference on Robotics and Automation, (2003b)

    Google Scholar 

  • M. Montemerlo, S. Thrun, et al., in Fast SLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges. International Joint Conference on Artificial Intelligence (2003a)

    Google Scholar 

  • M. Muller, Dynamic Time Warping. Information Retrieval for Music and Motion (Springer, Berlin, 2007)

    Book  Google Scholar 

  • B. Ristic, S. Arunlampalam et al., Beyond the Kalman Filter Particle Filters for Tracking Applications, Artech House, (2004)

    Google Scholar 

  • P. Robertson, M. Angermann, et al., Simultaneous Localization and Mapping for Pedestrians using only Foot-Mounted Inertial Sensors Ubicomp Orlando, Florida, (2009a)

    Google Scholar 

  • P. Robertson, M. Angermann et al., in Inertial Systems Based Joint Mapping and Positioning for Pedestrian Navigation. ION GNSS. (Savannah, Georgia, 2009b)

    Google Scholar 

  • P. Robertson, M. Angermann et al., in SLAM Dance: Inertial-Based Joint Mapping and Positioning for Pedestrian Navigation. Inside GNSS (2010)

    Google Scholar 

  • H. Sakoe, S. Chiba, Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process 26(1), 159–165 (1978)

    Google Scholar 

  • K. van de Sande, T. Gevers et al., Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1582–1596 (2010)

    Google Scholar 

  • S. Se, D.G. Lowe et al., Vision-based global localization and mapping for mobile robots. Transactions on Robotics, IEEE, (2005)

    Google Scholar 

  • R. Sim, P. Elinas et al., Vision-based SLAM using the Rao-Blackwellised Particle Filter. IJCAI Workshop on Reasoning with Uncertainty in Robotics, IJCAI, (2005)

    Google Scholar 

  • R. Smith, P. Cheeseman, On the representation of spatail uncertainty. Int. J. Robot. Res. 5(4), 56–68 (1986)

    Article  Google Scholar 

  • R. Smith, M. Self et al., Estimating uncertain spatial relationships in robotics. ed. by I.J. Cox, G.T. Wilfon. Autonomous Robot Vehicles. (Springer, New York, 1990), pp. 167–193

    Google Scholar 

  • S. Thrun, W. Burgard et al., Probablistic Robotics (MIT Press, Cambrige, 2006)

    Google Scholar 

  • S. Thurn, M. Montemerlo, The graph SLAM algorithm with applications to large-scale mapping of urban structures. Int. J. Robot. Res. 5(6), 403–429 (2005)

    Google Scholar 

  • M.J. Veth, Navigation using images, a survey of techniques. J. Inst. Navig. 58(2), 127–139 (2011)

    Google Scholar 

  • H. Wang, S. Sen et al., Unsupervised Indoor Location. MobiSys, (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camillo Gentile .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gentile, C., Alsindi, N., Raulefs, R., Teolis, C. (2013). Localization and Mapping Corrections. In: Geolocation Techniques. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1836-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1836-8_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1835-1

  • Online ISBN: 978-1-4614-1836-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics