Robust Stabilization and Disturbance Attenuation of Switched Linear Parameter-Varying Systems in Discrete Time



Nonconservative analysis of discrete-time switched linear parameter-varying systems is achieved via switching path-dependent Lyapunov and Kalman–Yakubovich–Popov inequalities. Exact convex conditions for the synthesis of a class of state-feedback controllers are then expressed in terms of nested unions of linear matrix inequalities. The resulting controllers are robust in the sense that their coefficients depend solely on a finite number of the most recent past modes and parameters, but not on the current mode or parameter.


Attenuation Hull 


  1. 1.
    Apkarian P, Gahinet P (1995) A convex characterization of gain-scheduled H controllers. IEEE Trans Automat Contr 40(5):853–864MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Blanchini F, Miani S (2003) Stabilization of LPV systems: state feedback, state estimation, and duality. SIAM J Contr Optim 42(1):76–97MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Daafouz J, Bernussou J (2001) Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties. Syst Contr Lett 43(5):355–359MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    de Oliveira MC, Bernussou J, Geromel JC (1999) A new discrete-time robust stability condition. Syst Contr Lett 37(4):261–265MATHCrossRefGoogle Scholar
  5. 5.
    Dullerud GE, Lall S (1999) A new approach for analysis and synthesis of time-varying systems. IEEE Trans Automat Contr 44(8):1486–1497MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Lee J-W (2006) On uniform stabilization of discrete-time linear parameter-varying control systems. IEEE Trans Automat Contr 51(10):1714–1721CrossRefGoogle Scholar
  7. 7.
    Lee J-W, Dullerud GE (2006) Optimal disturbance attenuation for discrete-time switched and Markovian jump linear systems. SIAM J Contr Optim 45(4):1329–1358MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Lee J-W, Dullerud GE (2006) Uniform stabilization of discrete-time switched and Markovian jump linear systems. Automatica 42(2):205–218MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Lescher F, Zhao JY, Borne P (2006) Switching LPV controllers for a variable speed pitch regulated wind turbine. Int J Comp Commun Contr 1(4):73–84Google Scholar
  10. 10.
    Lim S, How JP (2003) Modeling and H control for switched linear parameter-varying missile autopilot. IEEE Trans Contr Syst Technol 11(6):830–838CrossRefGoogle Scholar
  11. 11.
    Lu B, Wu F (2004) Switching LPV control designs using multiple parameter-dependent Lyapunov functions. Automatica 40(11):1973–1980MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Lu B, Wu F, Kim SW (2006) Switching LPV control of an F-16 aircraft via controller state reset. IEEE Trans Contr Syst Technol 14(2):267–277CrossRefGoogle Scholar
  13. 13.
    Shamma JS, Athans M (1991) Guaranteed properties of gain scheduled control for linear parameter-varying plants. Automatica 27(3):559–564MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Zhang L, Shi P (2008) 2 −  model reduction for switched LPV systems with average-dwell time. IEEE Trans Automat Contr 53(10):2443–2448MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zhang L, Shi P, Boukas EK, Wang C (2006) H control of switched linear discrete-time systems with polytopic uncertainties. Optim Contr Applicat Meth 27(5):273–291MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Electrical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Mechanical Science and EngineeringThe University of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations