Skip to main content

A Parameter-Dependent Lyapunov Approach for the Control of Nonstationary LPV Systems

  • Chapter
  • First Online:
Book cover Control of Linear Parameter Varying Systems with Applications
  • 3781 Accesses

Abstract

The chapter deals with the control of nonstationary linear parameter varying (NSLPV) systems, and is motivated by interest in the control of nonlinear systems along trajectories, particularly prespecified eventually periodic ones. The synthesis objective is to find a feedback parameter-dependent, time-varying controller, where the controller parameters are the same as those of the plant, such that the closed-loop system is asymptotically stable and the ℓ2-induced norm of the closed-loop input–output mapping is less than some ℓ2-gain performance levelγ. The analysis and synthesis results are given in terms of parameterized linear matrix inequalities (PLMIs), and some of the PLMI relaxation methods available in the literature, such as the sum of squares (SOS) decomposition method and the multiconvexity relaxation technique, are discussed. A fast and easy-to-implement algorithm for online controller construction is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apkarian P, Gahinet P (1995) A convex characterization of gain-scheduled \({\mathcal{H}}_{\infty }\) controllers. IEEE Trans Automat Contr 40:853–864

    Article  MathSciNet  MATH  Google Scholar 

  2. Apkarian P, Tuan HD (2000) Parameterized LMIs in control theory. SIAM J Contr Optim 38(4):1241–1264

    Article  MathSciNet  MATH  Google Scholar 

  3. Bochnak J, Coste M, Roy MF (1998) Real algebraic geometry. Springer-Verlag, Berlin

    MATH  Google Scholar 

  4. Branicky MS (1995) Studies in hybrid systems: modeling, analysis, and control. PhD thesis, Massachusetts Institute of Technology

    Google Scholar 

  5. Chapellat H, Dahleh M (1992) Analysis of time-varying control strategies for optimal disturnace rejection and robustness. IEEE Trans Automat Contr 37:1734–1745

    Article  MathSciNet  MATH  Google Scholar 

  6. Dullerud GE, Lall SG (1999) A new approach to analysis and synthesis of time-varying systems. IEEE Trans Automat Contr 44(8):1486–1497

    Article  MathSciNet  MATH  Google Scholar 

  7. Farhood M (2010) Trajectory regulation of a double pendulum using a nonstationary LPV approach. In: Proceedings of the American Control Conference

    Google Scholar 

  8. Farhood M (2012) LPV control of nonstationary systems: a parameter-dependent Lyapunov approach. IEEE Trans Automat Contr 57(1):209–215

    Article  Google Scholar 

  9. Farhood M, Dullerud GE (2002) LMI tools for eventually periodic systems. Syst Contr Lett 47(5):417–432

    Article  MathSciNet  MATH  Google Scholar 

  10. Farhood M, Dullerud GE (2005) Duality and eventually periodic systems. Int J Robust Nonlin Contr 15(13):575–599

    Article  MathSciNet  MATH  Google Scholar 

  11. Farhood M, Dullerud GE (2007) Model reduction of nonstationary LPV systems. IEEE Trans Automat Contr 52(2):181–196

    Article  MathSciNet  Google Scholar 

  12. Farhood M, Dullerud GE (2008) Control of nonstationary LPV systems. Automatica 44(8):2108–2119

    Article  MathSciNet  Google Scholar 

  13. Farhood M, Dullerud GE (2008) Control of systems with uncertain initial conditions. IEEE Trans Automat Contr 53(11):2646–2651

    Article  MathSciNet  Google Scholar 

  14. Farhood M, Feron E (2011) Obstacle-sensitive trajectory regulation via gain scheduling and semidefinite programming. IEEE Trans Contr Syst Technol, to appear, doi: 10.1109/TCST.2011.2159718, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5960813&isnumber=4389040

  15. Fradkov AL, Yakubovich VA (1979) The S-procedure and duality relations in nonconvex problems of quadratic programming. Vestnik Leningrad Univ Math 6:101–109. (In Russian 1973)

    MATH  Google Scholar 

  16. Gahinet P (1996) Explicit controller formulas for LMI-based H synthesis. Automatica 32(7):1007–1014

    Article  MathSciNet  MATH  Google Scholar 

  17. Green M, Limebeer D (1995) Linear robust control. Prentice Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  18. Halanay A, Ionescu V (1994) Time-varying discrete linear systems. Birkhäuser, Boston, MA

    Book  MATH  Google Scholar 

  19. Henrion D, Lasserre JB, Loefberg J (2009) GloptiPoly 3: moments, optimization and semidefinite programming. Optim Meth Software 24:761–779

    Article  MATH  Google Scholar 

  20. Lasserre J (2008) A semidefinite programming approach to the generalized problem of moments. Math Program 112:65–92

    Article  MathSciNet  MATH  Google Scholar 

  21. Laurent M (2009) Sums of squares, moment matrices and optimization over polynomials. In: Putinar M, Sullivant S (eds) Emerging applications of algebraic geometry. IMA volumes in mathematics and its applications, vol 149. Springer, pp 157–270

    Google Scholar 

  22. Lavaei J, Aghdam AG (2008) Robust stability of LTI systems over semialgebraic sets using sum-of-squares matrix polynomials. IEEE Trans Automat Contr 53(1):417–423

    Article  MathSciNet  Google Scholar 

  23. Liberzon D (2003) Switching in systems and control. Birkhäuser, Boston, MA

    Book  MATH  Google Scholar 

  24. Lofberg J (2004) YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference. Taipei, Taiwan. http://control.ee.ethz.ch/~joloef/wiki/ pmwiki.php

  25. Lofberg J, Parrilo PA (2004) From coefficients to samples: a new approach to SOS optimization. In: Proceedings of IEEE conference on decision and control, pp 3154–3159

    Google Scholar 

  26. Lu B, Wu F (2004) Switching LPV control designs using multiple parameter-dependent Lyapunov functions. Automatica 40(11):1973–1980

    Article  MathSciNet  MATH  Google Scholar 

  27. Packard A (1994) Gain scheduling via linear fractional transformations. Syst Contr Lett 22:79–92

    Article  MathSciNet  MATH  Google Scholar 

  28. Parrilo PA (2000) Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. PhD thesis, California Institute of Technology. http://www.cds.caltech.edu/pablo/

  29. Parrilo PA (2003) Semidefinite programming relaxations for semialgebraic problems. Math Program Ser B 96(2):293–320

    Article  MathSciNet  MATH  Google Scholar 

  30. Parrilo PA (2005) Exploiting algebraic structure in sum of squares programs. In: Henrion D, Garulli A (eds) Positive polynomials in control. Lecture notes in control and information sciences, vol. 312, Springer, Berlin/Heidelberg, pp 181–194

    Google Scholar 

  31. Prajna S, Papachristodoulou A, Seiler P, Parrilo PA (2004) SOSTOOLS: sum of squares optimization toolbox for MATLAB. Optim Meth Software. http://www.cds.caltech.edu/sostools and http://www.mit.edu/~parrilo/sostools

  32. Rugh WJ, Shamma JS (2000) Research on gain scheduling. Automatica 36(10):1401–1425

    Article  MathSciNet  MATH  Google Scholar 

  33. Scherer CW (2006) LMI relaxations in robust control. Euro J Contr 12(1)

    Google Scholar 

  34. Scherer CW, Hol CWJ (2006) Matrix sum-of-squares relaxations for robust semi-definite programs. Math Program 107:189–211

    Article  MathSciNet  MATH  Google Scholar 

  35. Stengle G (1973) A nullstellensatz and a positivstellensatz in semialgebraic geometry. Math Annal 207:87–97

    Article  MathSciNet  MATH  Google Scholar 

  36. Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Meth Software 11–12:625–653. Version 1.05. http://fewcal.kub.nl/sturm

  37. Toh KC, Todd MJ, Tutuncu RH (1999) SDPT3—a Matlab software package for semidefinite programming. Optim Meth Software 11:545–581

    Article  MathSciNet  Google Scholar 

  38. Tuan HD, Apkarian P (1999) Relaxations of parameterized LMIs with control applications. Int J Robust Nonlin Contr 9:59–84

    Article  MathSciNet  MATH  Google Scholar 

  39. Tuan HD, Apkarian P (2002) Monotonic relaxations for robust control: new characterizations. IEEE Trans Automat Contr 47(2):378–384

    Article  MathSciNet  Google Scholar 

  40. Wu F, Dong K (2006) Gain-scheduling control of LFT systems using parameter-dependent Lyapunov functions. Automatica 42:39–50

    Article  MathSciNet  MATH  Google Scholar 

  41. Wu F, Prajna S (2005) SOS-based solution approach to polynomial LPV system analysis and synthesis problems. Int J Contr 78(8):600–611

    Article  MathSciNet  MATH  Google Scholar 

  42. Yakubovich VA (1977) The S-procedure in nonlinear control theory. Vestnik Leningrad Univ Math 4. (In Russian 1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazen Farhood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farhood, M. (2012). A Parameter-Dependent Lyapunov Approach for the Control of Nonstationary LPV Systems. In: Mohammadpour, J., Scherer, C. (eds) Control of Linear Parameter Varying Systems with Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1833-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1833-7_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-1832-0

  • Online ISBN: 978-1-4614-1833-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics