Skip to main content

Prediction-Error Identification of LPV Systems: Present and Beyond

  • Chapter
  • First Online:
Control of Linear Parameter Varying Systems with Applications

Abstract

The proposed chapter aims at presenting a unified framework of prediction-error based identification of LPV systems using freshly developed theoretical results. Recently, these methods have got a considerable attention as they have certain advantages in terms of computational complexity, optimality in the stochastic sense and available theoretical tools to analyze estimation errors like bias, variance, etc., and the understanding of consistency and convergence. Beside the introduction of the theoretical tools and the prediction-error framework itself,the scope of the chapter includes a detailed investigation of the LPV extension of the classical model structures like ARX, ARMAX, Box–Jenkins, OE, FIR, and series expansion models, like orthonormal basis functions based structures, together with their available estimation approaches including linear regression, nonlinear optimization, and iterative IV methods. Questions of model structure selection and experimental design are also investigated. In this way, the chapter provides a detailed overview about the state-of-the-art of LPV prediction-error identification giving the reader an easy guide to find the right tools of his LPV identification problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    LPV–IO representations can also be defined for multiple-input multiple-output (MIMO) systems in a similar form as (2.1), see [23].

  2. 2.

    \(h : {\mathbb{R}}^{n} \rightarrow\mathbb{R}\) is a real meromorphic function if \(h = f/g\) with f, g analytic and g≠0.

  3. 3.

    The notation \(\bar{\mathbb{E}}\{x\} {=\lim }_{N\rightarrow \infty }\frac{1} {N}{\sum\nolimits }_{k=1}^{N}\mathbb{E}\{x(k)\}\) is adopted from the prediction-error framework of [16].

  4. 4.

    It is more natural to use dynamic dependence in the parametrization of the coefficients in (2.34), but for the sake of simplicity we use only static dependence here.

References

  1. Bamieh B, Giarré L (2002) Identification of linear parameter varying models. Int Journal of Robust Nonlin Contr 12:841–853

    Article  MATH  Google Scholar 

  2. Boyd S, Chua LO (1985) Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans Circ Syst 32(11):1150–1161

    Article  MathSciNet  MATH  Google Scholar 

  3. Butcher M, Karimi A, Longchamp R (2008) On the consistency of certain identification methods for linear parameter varying systems. In: Proceedings of the 17th IFAC world congress, Seoul, Korea, pp 4018–4023

    Google Scholar 

  4. Casella F, Lovera M (2008) LPV/LFT modelling and identification: overview, synergies and a case study. In: Proceedings of IEEE international symposium on computer-aided control system design, San Antonio, TX, USA, pp 852–857

    Google Scholar 

  5. Cerone V, Regruto D (2008) Set-membership identification of LPV models with uncertain measurements of the time-varying parameter. In: Proceedings of the 47th IEEE conference on decision and control, Cancun, Mexico, pp 4491–4496

    Google Scholar 

  6. Dankers AG, Tóth R, Heuberger PSC, Bombois X, Van den Hof PMJ (2011) Identifiability and the informativity of data sets for LPV–ARX identification. Proceedings of the 50th IEEE conference on decision and control, Orlando, FL, USA, pp 799–804

    Google Scholar 

  7. dos Santos PL, Ramos JA, de Carvalho JLM (2007) Identification of linear parameter varying systems using an iterative deterministic-stochastic subspace approach. In: Proceedings of the European Control Conf, Kos, Greece, pp 4867–4873

    Google Scholar 

  8. Gevers M, Bazanella AS, Bombois X, Mišković L (2009) Identification and the information matrix: how to get just sufficiently rich? IEEE Trans Automat Contr 54(12):2828–2840

    Article  Google Scholar 

  9. Giarré L, Bauso D, Falugi P, Bamieh B (2006) LPV model identification for gain scheduling control: an application to rotating stall and surge control problem. Contr Eng Prac 14(4):351–361

    Article  Google Scholar 

  10. Heuberger PSC, Van den Hof PMJ, Bo Wahlberg (2005) Modeling and Identification with Rational Orthonormal Basis Functions. Springer-Verlag, London

    Book  Google Scholar 

  11. Hsu K, Vincent TL, Poolla K (2008) Nonparametric methods for the identification of linear parameter varying systems. In: Proceedings of the international symposium on computer-aided control system design, San Antonio, TX, USA, pp 846–851

    Google Scholar 

  12. Khalate AA, Bombois X, Tóth R, Babuška R (2009) Optimal experimental design for LPV identification using a local approach. In: Proceedings of the 15th IFAC symposium on system identification, Saint-Malo, France, pp 162–167

    Google Scholar 

  13. Laurain V, Gilson M, Tóth R, Garnier H (2010) Refined instrumental variable methods for identification of LPV Box–Jenkins models. Automatica 46(6):959–967

    Article  MATH  Google Scholar 

  14. Laurain V, Tóth R, Gilson M, Garnier H (2011) Direct identification of continuous-time LPV input/output models. Special issue, IET Contr Theor Appl 4(10):2082–2096

    Google Scholar 

  15. Leith DJ, Leithhead WE (1998) Gain-scheduled controller design: an analytic framework directly incorporating non-equilibrium plant dynamics. Int J Contr 70:249–269

    Article  MATH  Google Scholar 

  16. Ljung L (1999) System Identification, theory for the user. Prentice Hall, London

    Google Scholar 

  17. Ljung L (2009) Experiments with identification of continuous time models. In: Proceedings of the 15th IFAC symposium on system identification, Saint-Malo, France

    Google Scholar 

  18. Lovera M, Mercère G (2007) Identification for gain-scheduling: a balanced subspace approach. In: Proceedings of the American Control Conf, New York City, USA, pp 858–863

    Google Scholar 

  19. Murray-Smith R, Johansen TA (1997) Multiple model approaches to modeling and control. Taylor and Francis, London

    Google Scholar 

  20. Rao GP, Unbehauen H (2004) Identification of continuous-time systems: direct or indirect? Syst Sci 30(3):25–50

    MATH  Google Scholar 

  21. Söderström T, Stoica P (1983) Instrumental variable methods for system identification. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  22. Sznaier M, Mazzaro C, Inanc T (2000) An LMI approach to control oriented identification of LPV systems. In: Proceedings of the American Control Conf, Chicago, IL, USA, pp 3682–3686

    Google Scholar 

  23. Tóth R (2010) Modeling and Identification of Linear Parameter-Varying Systems. Lecture notes in control and information sciences, Vol. 403, Springer, Germany

    Google Scholar 

  24. Tóth R, Abbas H, Werner W (2011a) On the state-space realization of LPV input–output model: practical approaches. IEEE Trans Contr Syst Technol 20(1):139–153

    Google Scholar 

  25. Tóth R, Bitar E, Heuberger PSC, Van den Hof PMJ, Poolla K (2011b) A prediction-error identification framework for linear parameter-varying systems. In prep.

    Google Scholar 

  26. Tóth R, Felici F, Heuberger PSC, Van den Hof PMJ (2007) Discrete time LPV I/O and state space representations, differences of behavior and pitfalls of interpolation. In: Proceedings of the European Control Conf, Kos, Greece, pp 5418–5425

    Google Scholar 

  27. Tóth R, Heuberger PSC, Van den Hof PMJ (2008) Flexible model structures for LPV identification with static scheduling dependency. In: Proceedings of the 47th IEEE conference on decision and control, Cancun, Mexico, pp 4522–4527

    Google Scholar 

  28. Tóth R, Heuberger PSC, Van den Hof PMJ (2009a) Asymptotically optimal orthonormal basis functions for LPV system identification. Automatica 45(6):1359–1370

    Article  MATH  Google Scholar 

  29. Tóth R, Laurain V, Gilson M, Garnier H (2011c) On the closed loop identification of LPV models using instrumental variables. In: Proceedings of the 18th IFAC World Congress, Milano, Italy

    Google Scholar 

  30. Tóth R, Laurain V, Zheng W, Poolla K (2011d) A support vector machine approach for LPV linear-regression models. Proceedings of the 50th IEEE Conf. on Decision and Control, Orlando, FL, USA, pp 3192–3197

    Google Scholar 

  31. Tóth R, Lyzell C, Enqvist M, Heuberger PSC, Van den Hof PMJ (2009b) Order and structural dependence selection of LPV–ARX models using a nonnegative garrote approach. In: Proceedings of the 48th IEEE conference on decision and control, Shanghai, China, pp 7406–7411

    Google Scholar 

  32. Tóth R, Willems JC, Heuberger PSC, Van den Hof PMJ (2011e) The behavioral approach to linear parameter-varying systems. IEEE Trans Autom Contr 56(11):2499–2514

    Article  Google Scholar 

  33. van Wingerden JW, Verhaegen M (2009) Subspace identification of bilinear and LPV systems for open- and closed-loop data. Automatica 45(2):372–381

    Article  MathSciNet  MATH  Google Scholar 

  34. Verdult V, Verhaegen M (2005) Kernel methods for subspace identification of multivariable LPV and bilinear systems. Automatica 41(9):1557–1565

    Article  MathSciNet  MATH  Google Scholar 

  35. Wei X (2006) Advanced LPV techniques for diesel engines. PhD thesis, Johannes Kepler University, Linz

    Google Scholar 

  36. Wei X, Del Re L (2006) On persistent excitation for parameter estimation of quasi-LPV systems and its application in modeling of diesel engine torque. In: Proceedings of the 14th IFAC symposium on system identification, Newcastle, Australia, pp 517–522

    Google Scholar 

  37. Willems JC, Yamamoto Y (2007) Behaviors defined by rational funtions. Linear algebra and its applications 425:226–241

    Article  MathSciNet  MATH  Google Scholar 

  38. Young PC (1984) Recursive estimation and time-series analysis. Springer-Verlag, Berlin

    MATH  Google Scholar 

  39. Young PC (2008) The refined instrumental variable method: unified estimation of discrete and continuous-time transfer function models. J Euro Syst Autom 42:149–179

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Tóth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tóth, R., Heuberger, P.S.C., Van den Hof, P.M.J. (2012). Prediction-Error Identification of LPV Systems: Present and Beyond. In: Mohammadpour, J., Scherer, C. (eds) Control of Linear Parameter Varying Systems with Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1833-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1833-7_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-1832-0

  • Online ISBN: 978-1-4614-1833-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics