LPV Modeling and Control of Semi-active Dampers in Automotive Systems

  • Anh-Lam Do
  • Olivier Sename
  • Luc Dugard


The aim of this chapter is to emphasize the interest of the LPV methodology for suspension modeling and control. Indeed, the main features of a semi-active automotive suspensions are:
  • The damper can only dissipate energy.

  • The damper has a nonlinear behavior which is important to account for in the control design step.

New methodologies have been recently designed to separately cope with these constraints (Do AL et al., An LPV control approach for semi-active suspension control with actuator constraints, 2010; Poussot-Vassal et al., Contr Eng Pract 16(12):1519–1534, 2008; Savaresi et al., Semi-active suspension control for vehicles, 2010). In this study, recent developments are presented to:
  • First, develop an LPV model for an automotive suspension system starting from a nonlinear semi-active damper model.

  • Second, using an original LPV representation of the dissipativity of the semi-active damper, develop an ad hoc H LPV controller.

The whole LPV model is used to design a polytopic H controller for an automotive suspension system equipped with a Magneto-Rheological semi-active damper. This controller aims at improving ride comfort and/or road holding, depending on the required specifications. Some simulation results are given on realistic vehicle and damper models (whose validation on real data has been performed), allowing to show the efficiency of the approach.


Ride Comfort Road Profile Damp Force Schedule Parameter Suspension Deflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the co-authors of the referenced papers, specially Jorge de Jesus Lozoya-Santos, Ricardo Ambrocio Ramirez-Mendoza, Ruben Morales-Menendez (TEC Monterrey, Mexico), who have worked with us on the modeling and control of MR dampers; Sergio Savaresi, Cristiano Spelta, and Diego Delvecchio (Politecnico di Milano, Italy) for the discussions on the Mixed SH-ADD control.


  1. 1.
    Alfaro-Cid E, McGookin EW, Murray-Smith DJ (2008) Optimisation of the weighting functions of an \({\mathcal{H}}_{\infty }\) controller using genetic algorithms and structured genetic algorithms. Int J Syst Sci 39(4):335–347MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Apkarian P, Gahinet P (1995) A convex characterization of gain scheduled \({\mathcal{H}}_{\infty }\) controllers. IEEE Trans Automat Contr 40(5):853–864MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Beaven RW, Wright MT, Seaward DR (1996) Weighting function selection in the \({\mathcal{H}}_{\infty }\) design process. Contr Eng Pract 4(5):625–633CrossRefGoogle Scholar
  4. 4.
    Bouc R (1967) Forced vibration of mechanical systems with hysteresis. In: Proceedings of the Fourth Conference on Nonlinear Oscillation, Prague, Czechoslovakia, p 315Google Scholar
  5. 5.
    Campos-Delgado DU, Zhou K (2001) \({\mathcal{H}}_{\infty }\) strong stabilization. IEEE Trans Automat Contr 46(12):1968–1972MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Canale M, Milanese M, Novara C (2006) Semi-active suspension control using fast model-predictive techniques. IEEE Trans Contr Syst Tech 14(6):1034–1046CrossRefGoogle Scholar
  7. 7.
    Cao YY, Lam J (2000) On simultaneous \({\mathcal{H}}_{\infty }\) control and strong \({\mathcal{H}}_{\infty }\) stabilization. Automatica 36(6):859–865MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRefGoogle Scholar
  9. 9.
    Do AL, Sename O, Dugard L (2010) An LPV control approach for semi-active suspension control with actuator constraints. In: Proceedings of the IEEE American control conference (ACC), Baltimore, Maryland, USAGoogle Scholar
  10. 10.
    Do AL, Sename O, Dugard L, Savaresi S, Spelta C, Delvecchio D (2010) An extension of mixed sky-hook and add to magneto-rheological dampers. In: Proceedings of the 4th IFAC symposium on system, structure and control (SSSC), Ancona, ItalyGoogle Scholar
  11. 11.
    Do AL, Sename O, Dugard L (2011) Optimisation par algorithme génétique d’une commande LPV de suspension semi-active. In: Journée Doctorale MACS, Marseille, FranceGoogle Scholar
  12. 12.
    Do AL, Sename O, Dugard L, Soualmi B (2011) Multi-objective optimization by genetic algorithms in \({\mathcal{H}}_{\infty }\)/LPV control of semi-active suspension. In: Proceedings of the 18th IFAC world congress (WC), Milan, ItalyGoogle Scholar
  13. 13.
    Do AL, Spelta C, Savaresi S, Sename O, Dugard L, Delvecchio D (2010) An LPV control approach for comfort and suspension travel improvements of semi-active suspension systems. In: Proceedings of the 49th IEEE conference on decision and control (CDC), Atlanta, GA,pp 5660–5665Google Scholar
  14. 14.
    Fialho I, Balas G (2002) Road adaptive active suspension design using linear parameter varying gain scheduling. IEEE Trans Contr Syst Tech 10(1):43–54CrossRefGoogle Scholar
  15. 15.
    Gillespie TD (1992) Fundamentals of vehicle dynamics. Society of Automotive Engineers Inc, Warrendale, PAGoogle Scholar
  16. 16.
    Giorgetti N, Bemporad A, Tseng H, Hrovat D (2006) Hybrid model predictive control application toward optimal semi-active suspension. Int J Robust Nonlinear Contr 79(5):521–533MathSciNetMATHGoogle Scholar
  17. 17.
    Gomes da Silva Jr JM, Limon D, Alamo T, Camacho EF (2008) Dynamic output feedback for discrete-time systems under amplitude and rate actuator constraints. IEEE Trans Automat Contr 53(10):2367–2372CrossRefGoogle Scholar
  18. 18.
    Grimm G, Hatfield J, Postlethwaite I, Teel A, Turner M, Zaccarian L (2003) Antiwindup for stable linear systems with input saturation: An LMI-based synthesis. IEEE Trans Automat Contr 48(9):1509–1525MathSciNetCrossRefGoogle Scholar
  19. 19.
    Guglielmino E, Sireteanu T, Stammers C, Ghita G, Giuclea M (2008) Semi-active suspension control. Springer, BerlinMATHGoogle Scholar
  20. 20.
    Guo S, Yang S, Pan C (2006) Dynamic modeling of magnetorheological damper behaviors. J Intell Mater Syst Struct 17:3–14CrossRefGoogle Scholar
  21. 21.
    Hrovat D (1997) Survey of advanced suspension developments and related optimal control application. Automatica 33(10):1781–1817MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Hu J, Bohn C, Wu HR (2000) Systematic \({\mathcal{H}}_{\infty }\) weighting function selection and its application to the real-time control of a vertical take-off aircraft. Contr Eng Pract 8:241–252CrossRefGoogle Scholar
  23. 23.
    Isermann R (2003) Mechatronic systems: fundamentals. Springer, UKGoogle Scholar
  24. 24.
    Ivers DE, Miller LR (1989) Experimental comparison of passive, semi-active on-off, and semi-active continuous suspensions. SAE Technical Paper 892484Google Scholar
  25. 25.
    Jr BS, Dyke S, Sain M, Carlson J (1997) Phenomenological model of an MR damper. J Engrg Mech 123(3):230–238CrossRefGoogle Scholar
  26. 26.
    Karnopp D, Crosby M, Harwood R (1974) Vibration control using semi-active force generators. J Eng Ind 96:619–626CrossRefGoogle Scholar
  27. 27.
    Kiencke U, Nielsen L (2000) Automotive control systems for engine, driveline, and vehicle. Springer, BerlinGoogle Scholar
  28. 28.
    Kothare MV, Campo PJ, Morari M, Nett CN (1994) A unified framework for the study of anti-windup designs. Automatica 30:1869–1883MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Lozoya-Santos JJ, Aubouet S, Morales-Menendez R, Sename O, Ramirez-Mendoza RA, Dugard L (2010) Simulation performance of a quarter of vehicle including an MR damper model with hysteresis. In: 7th Eurosim congress on modelling and identification, Prague, Czech RepublicGoogle Scholar
  30. 30.
    Lozoya-Santos JJ, Morales-Menendez R, Ramirez-Mendoza RA, Nino-Juarez E (2009) Frequency and current effects in an MR damper. Int J Veh Autonom Syst 7(3/4):121–140CrossRefGoogle Scholar
  31. 31.
    Lozoya-Santos JJ, Ruiz-Cabrera JA, Morales-Menéndez R, Ramírez-Mendoza R, Diaz-Salas V (2009) Building training patterns for modelling MR dampers. In: ICINCO-SPSMC, pp 156–161Google Scholar
  32. 32.
    Mulder EF, Tiwari PY, Kothare MV (2009) Simultaneous linear and anti-windup controller synthesis using multiobjective convex optimization. Automatica 45:805–811MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Patten WN, He Q, Kuo CC, Liu L, Sack RL (1994) Suppression of vehicle induced bridge vibration via hydraulic semi-active vibration dampers. In: Proceeding of the 1st world conference on structural control, vol 3, pp 30–38Google Scholar
  34. 34.
    Poussot-Vassal C, Sename O, Dugard L, Gáspár P, Szabó Z, Bokor J (2008) New semi-active suspension control strategy through LPV technique. Contr Eng Pract 16(12):1519–1534CrossRefGoogle Scholar
  35. 35.
    Rossi C, Lucente G (2004) \({\mathcal{H}}_{\infty }\) control of automotive semi-active suspensions. In: Proceedings of the 1st IFAC symposium on advances in automotive control (AAC), Salerno, ItalyGoogle Scholar
  36. 36.
    Sammier D, Sename O, Dugard L (2003) Skyhook and \({\mathcal{H}}_{\infty }\) control of active vehicle suspensions: some practical aspects. Vehicle Syst Dyn 39(4):279–308CrossRefGoogle Scholar
  37. 37.
    Savaresi S, Bittanti S, Montiglio M (2005) Identification of semi-physical and black-box models: the case of MR-dampers for vehicles control. Automatica 41:113–117MathSciNetMATHGoogle Scholar
  38. 38.
    Savaresi S, Poussot-Vassal C, Spelta C, Sename O, Dugard L (2010) Semi-active suspension control for vehicles. Elsevier, UKGoogle Scholar
  39. 39.
    Savaresi S, Silani E, Bittanti S (2005) Acceleration driven damper (ADD): an optimal control algorithm for comfort oriented semi-active suspensions. ASME Trans J Dyn Syst Meas Contr 127(2):218–229CrossRefGoogle Scholar
  40. 40.
    Savaresi S, Spelta C (2007) Mixed sky-hook and ADD: Approaching the filtering limits of a semi-active suspension. ASME Transactions: J Dyn Syst Meas Contr 129(4):382–392CrossRefGoogle Scholar
  41. 41.
    Scherer C, Gahinet P, Chilali M (1997) Multiobjective output-feedback control via LMI optimization. IEEE Trans Automat Contr 42(7):896–911MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Stanway R, Sproston J, Stevens N (1987) Non-linear modelling of an electro-rheological vibration damper. J Electrostat 20(2):167–184CrossRefGoogle Scholar
  43. 43.
    Valasek M, Novak M, Sika Z, Vaculin O (1997) Extended groundhook – new concept of semi-active control of trucks suspension. Veh Syst Dyn 29:289–303CrossRefGoogle Scholar
  44. 44.
    Wen T (1976) Method for random vibration of hysteretic systems. J Eng Mech ASCE 102(EM2):249–263Google Scholar
  45. 45.
    Wu F, Grigoriadis KM, Packard A (2000) Anti-windup controller design using linear parameter-varying control methods. Int J Contr 73(12):1104–1114MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Zin A, Sename O, Basset M, Dugard L, Gissinger G (2004) A nonlinear vehicle bicycle model for suspension and handling control studies. In: Proceedings of the IFAC conference on advances in vehicle control and safety (AVCS), Genova, Italy, pp 638–643Google Scholar
  47. 47.
    Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength pareto evolutionary algorithm. Tech. rep.Google Scholar
  48. 48.
    Zuo L, Nayfeh SA (2007) \({\mathcal{H}}_{2}\) optimal control of disturbance-delayed systems with application to vehicle suspensions. Veh Syst Dyn 45:3:233–247Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.GIPSA-Lab, Control Systems DepartmentCNRS-Grenoble INP, ENSE3St Martin d’Hères cedexFrance

Personalised recommendations