Skip to main content

Robust Estimation with Partial Gain-Scheduling Through Convex Optimization

  • Chapter
  • First Online:
Control of Linear Parameter Varying Systems with Applications

Abstract

The problem of robust estimation for uncertain dynamical systems with a linear fractional dependence on uncertainties is considered. It is assumed that some of the parametric uncertainties affecting the system are available online and the estimator is scheduled on these parameters. The integral quadratic constraint (IQC) framework is considered for handling the uncertainties. Full-block static multipliers are used for capturing the properties of the measured parameters in the system while no structural or dynamic restrictions are placed on the multipliers used for the nonmeasured uncertainties. Sufficient existence conditions for constructing such robustly stabilizing, partially gain-scheduled estimators with guaranteed \({\mathcal{L}}_{2}\)-gain bounds are given in terms of finite dimensional linear matrix inequalities. A numerical example illustrates the advantages of gain-scheduling in robust estimation whenever possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbosa KA, de Souza CE, Trofino A (2005) Robust\({\mathcal{H}}_{2}\) filtering for uncertain linear systems: LMI based methods with parametric Lyapunov function. Syst Contr Lett 54:251–262

    Google Scholar 

  2. Chen X, Wen JT (1995) Robustness analysis of LTI systems with structured incrementally sector bounded nonlinearities. Proc ACC June:3883–3887

    Google Scholar 

  3. D’Amato FJ, Rotea MA, Megretski AV, Jönsson UT (2001) New result for analysis of systems with repeated nonlinearities. Automatica 37:739–747

    MATH  Google Scholar 

  4. Dullerud G, Paganini F (2000) A course in robust control theory. Springer Verlag, New York

    MATH  Google Scholar 

  5. Francis BA (1987) A course in\({\mathcal{H}}_{\infty }\) control theory. Springer, Berlin

    Google Scholar 

  6. Gahinet P, Apkarian P (1994) A Linear Matrix Inequality approach to\({\mathcal{H}}_{\infty }\) control. Int J Robust Nonlinear Contr 4:421–448

    Google Scholar 

  7. Geromel JC (1999) Optimal linear filtering under parameter uncertainty. IEEE Trans Signal process 47:168–175

    Article  MATH  Google Scholar 

  8. Geromel JC, de Oliveira MC (2001)\({\mathcal{H}}_{2}\) and \({\mathcal{H}}_{\infty }\) robust filtering for convex bounded uncertain systems. IEEE Trans Automat Contr 46:100–107

    Google Scholar 

  9. Geromel JC, de Oliveira MC, Bernussou J (1999) Robust filtering of discrete-time linear systems with parameter-dependent Lyapunov functions. In: Proceedings of the 38th CDC, pp 570–575

    Google Scholar 

  10. Helmersson A (1999) An IQC-based stability criterion for systems with slowly varying parameters. In: Proceedings of the 14thIFAC Trien Cong Beijing, China vol 14, pp 525–530

    Google Scholar 

  11. Iwasaki T, Skelton R (1994) All controllers for the general\({\mathcal{H}}_{\infty }\)control problem: LMI existence conditions and state space formulas. Automatica 30:1307–1317

    Article  MathSciNet  MATH  Google Scholar 

  12. Jun M, Safonov MG (2000) Stability analysis of a system with time-delayed states. Proc ACC IL:949–952

    Google Scholar 

  13. Kao C, Rantzer A (2007) Stability analysis of systems with uncertain time-varying delays. Automatica 43:959–970

    Article  MathSciNet  MATH  Google Scholar 

  14. Köroğlu H, Scherer CW (2006) Robust stability analysis against perturbations of smoothly time-varying parameters. In: Proceedings of the 45thIEEE CDC, pp 2895–2900

    Google Scholar 

  15. Köse IE, Scherer CW (2009) Robust \({\mathcal{L}}_{2}\)-gain feedforward control of uncertain systems using dynamic IQCs. Int J Robust Nonlinear Contr 19:1224–1247

    Article  MATH  Google Scholar 

  16. Megretski A, Rantzer A (1997) System analysis via integral quadratic constraints. IEEE Trans Automat Contr 42:819–830

    Article  MathSciNet  MATH  Google Scholar 

  17. Scherer CW (2001) LPV control and full-block multipliers. Automatica 37:361–375

    Article  MathSciNet  MATH  Google Scholar 

  18. Scherer CW (2009) Robust Controller Synthesis is Convex for Systems without Control Channel Uncertainties. In: Van den Hof PMJ, Scherer CW, Heuberger PSC (eds) Model based control, bridging rigorous theory and advanced technology, Springer

    Google Scholar 

  19. Scherer CW, Köse IE (2008) Robustness with dynamic Integral Quadratic Constraints: An exact state space characterization of nominal stability with applications to robust estimation. Automatica 44:1666–1675

    Article  MATH  Google Scholar 

  20. Scherer CW, Köse IE (2010) Gain -Scheduled Controller Synthesis using Dynamic D-scales. IEEE Trans Automat Contr (Accepted for publication)

    Google Scholar 

  21. Scherer CW, Köse IE (2011) From Transfer Matrices to Realizations: Convergence Properties and Parameterization of Robustness Analysis Conditions. Preprint

    Google Scholar 

  22. Scorletti G, Fromion V (2006) Further results on the design of robust \({\mathcal{H}}_{\infty }\) feedforward controllers and filters. In: Proceedings of the IEEE CDC, pp 3560–3565

    Google Scholar 

  23. Sun K, Packard A (2005) Robust \({\mathcal{H}}_{2}\) and \({\mathcal{H}}_{\infty }\) filters for uncertain lft system. IEEE Trans Automat Contr 50:715–720

    Article  MathSciNet  Google Scholar 

  24. Tuan H, Apkarian P, Nguyen TQ (2003) Robust filtering for uncertain nonlinearly parametrized plants. IEEE Trans Signal Process 51:1806–1815

    Article  MathSciNet  Google Scholar 

  25. Veenman J, Scherer CW (2011) IQC-synthesis with general dynamic multipliers. In: Proceedings of the 18thIFAC World Congress

    Google Scholar 

  26. Zames G, Falb PL (1968) Stability conditions for systems with monotone and slope-restricted nonlinearities. SIAM J Contr 6:89–109

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/1) at the University of Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost Veenman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Veenman, J., Scherer, C.W., Köse, I.E. (2012). Robust Estimation with Partial Gain-Scheduling Through Convex Optimization. In: Mohammadpour, J., Scherer, C. (eds) Control of Linear Parameter Varying Systems with Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1833-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1833-7_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-1832-0

  • Online ISBN: 978-1-4614-1833-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics