Skip to main content

Metals

  • Chapter
  • First Online:
The Virtual Fields Method

Abstract

The objective of this section is to present several studies that have dealt with the use of the VFM to identify elasto-plastic constitutive laws on metallic materials. In the first part, several studies focusing on monotonic quasi-static loadings using different sheet metal specimen geometries are summarized. These studies correspond to the early stages of the adaptation of the VFM to elasto-plasticity and present a gradual progression from simple to more complex situations. The most advanced version is then presented at the end of this first part with the use of cyclic loadings to identify a combined isotropic and kinematic hardening model. Significant progress in the virtual fields selection has also been made in this study. In the second part, a first example of the identification of a visco-plasticity model is presented using moderate strain rate tests where full advantage is taken of the presence of heterogeneous strain rate maps to identify strain rate sensitivity over a strain rate range of a decade with a single test. Finally, a first attempt at the identification of a spatially heterogeneous elasto-plastic law is presented with application of a steel girth weld and a titanium hybrid laser weld.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meuwissen MHH, Oomens CWJ, Baaijens FPT, Petterson R, Janssen JD (1998) Determination of the elasto-plastic properties of aluminium using a mixed numerical-experimental method. J Mater Process Technol 75(1–3):204–211

    Article  Google Scholar 

  2. Cooreman S, Lecompte D, Sol H, Vantomme J, Debruyne D (2008) Identification of mechanical material behavior through inverse modeling and DIC. Exp Mech 48(4):421–433

    Article  Google Scholar 

  3. Latourte F, Chrysochoos A, Pagano S, Wattrisse B (2008) Elastoplastic behavior identification for heterogeneous loadings and materials. Exp Mech 48:435–449

    Article  Google Scholar 

  4. Rossi M, Pierron F (2012) Identification of plastic constitutive parameters at large deformation from three dimensional displacement fields. Comput Mech 49(1):53–71

    Article  MATH  Google Scholar 

  5. Pierron F, Avril S, Tran VT (2010) Extension of the virtual fields method to elasto-plastic material identification with cyclic loads and kinematic hardening. Int J Solids Struct 47:2993–3010

    Article  MATH  Google Scholar 

  6. Rossi M, Chiappini G, Sasso M (2010) Characterization of aluminum alloys using a 3D full field measurement. 2010 SEM annual conference and exposition on experimental and applied mechanics, Indianapolis, IN, 7–10 June 2010

    Google Scholar 

  7. Moulart R, Avril S, Pierron F (2006) Identification of the through-thickness rigidities of a thick laminated composite tube. Compos Part A: Appl Sci Manuf 37(2):326–336

    Article  Google Scholar 

  8. Pannier Y, Avril S, Rotinat R, Pierron F (2006) Identification of elasto-plastic constitutive parameters from statically undetermined tests using the virtual fields method. Exp Mech 46(6):735–755

    Article  Google Scholar 

  9. Grédiac M, Pierron F (2006) Applying the virtual fields method to the identification of elasto-plastic constitutive parameters. Int J Plasticity 22:602–627

    Article  MATH  Google Scholar 

  10. Avril S, Pierron F, Pannier Y, Rotinat R (2008) Stress reconstruction and constitutive parameter identification in elastoplasticity using measurements of deformation fields. Exp Mech 48(4):403–420

    Article  Google Scholar 

  11. Meuwissen MHH (1998) An inverse method for the echanical characterisation of metals. PhD thesis, Eindhoven Technical University, 1998

    Google Scholar 

  12. Pannier Y (2006) Identification de paramètres élastoplastiques par des essais statiquement indéterminés: mise en œuvre expérimentale et validation de la méthode des champs virtuels (Identification of elasto-plastic parameters from statically-undetermined tests: experimental application and validation of the virtual field method.). PhD thesis, Ecole Nationale Supérieure d’Arts et Métiers (ENSAM), 2006. http://www.lmpf.net/FR/centre_telechargement/client/download.php?id=9

  13. Tran VT (2008) Identification du comportement des matériaux métalliques au del de leur limite d’élasticité par la méthode des champs virtuels (thorough study to identify elasto-plastic constitutive parameters of metallic materials by the virtual fields method). PhD thesis, Université de Technologie de Troyes (UTT), 2008. http://www.lmpf.net/FR/centre_telechargement/client/download.php?id=16

  14. Avril S, Pierron F, Yan J, Sutton MA (2008) Identification of viscoplastic parameters and characterization of Lüders behavior using Digital Image Correlation and the Virtual Fields Method. Mech Mater 40(9):729–742

    Article  Google Scholar 

  15. Lemaître J, Chaboche J-L (1990) Mechanics of solid materials. Springer, New York

    Book  MATH  Google Scholar 

  16. Yoshida FA (2000) A constitutive model of cyclic plasticity. Int J Plasticity 16:359–380

    Article  MATH  Google Scholar 

  17. Perzyna P (1963) The constitutive equations for rate-sensitive plastic materials. Q Appl Math 20:321–332

    MathSciNet  MATH  Google Scholar 

  18. Kajberg J, Sundin KG, Melin LG, Ståhle P (2004) High strain rate tensile and viscoplastic parameter identification using micoscopic high-speed photography. Int J Plasticity 20:561–575

    Article  MATH  Google Scholar 

  19. Graff S, Forest S, Strudel J-L, Prioul C, Pilvin P, Bechade J-L (2004) Strain localization phenomena associated with static and dynamic strain ageing in notched specimens: experiments and finite element simulations. Mater Sci Eng A 387-389:181–185

    Google Scholar 

  20. Sutton MA, Yan J, Avril S, Pierron F, Adeeb S (2008) Identification of heterogeneous constitutive parameters in a welded specimen: Uniform stress and virtual fields methods for material property estimation. Exp Mech 48(4):451–464

    Article  Google Scholar 

  21. Casavola C, Pappalettere C, Tattoli F (2009) Experimental and numerical study of static and fatigue properties of titanium alloy welded joints. Mech Mater 41(3):231–243

    Article  Google Scholar 

  22. Tattoli F, Pierron F, Rotinat R, Casavola C, Pappalettere C (2010) Full-field strain measurement on titanium welds and local elasto-plastic identification with the virtual fields method. In: El Mansori M, Chinesta F, Chastel Y (eds) International conference on advances in materials and processing technologies (AMPT2010), vol 1315 of AIP conference proceedings. American Institute of Physics, 2010

    Google Scholar 

  23. Le Louëdec G, Sutton MA, Pierron F, Reynolds AP (2011) Dynamic local elasto-plastic identification of the behaviour of aluminium FSW welds with the virtual fields method. In: Annual conference of the British society for experimental mechanics (BSSM), 2011. 7–9 September 2011, Edinburgh, UK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pierron, F., Grédiac, M. (2012). Metals. In: The Virtual Fields Method. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1824-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1824-5_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1823-8

  • Online ISBN: 978-1-4614-1824-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics