Time-Dependent Dielectric Breakdown (TDDB) and Future Directions

  • Ming He
  • Toh-Ming Lu
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 157)


More and more attention has been devoted to the thermal and electrical stability of metal–dielectric interfaces in microelectronic devices. One of the major driving forces is the need to understand the mechanisms of dielectric breakdown with different metal–dielectric interfaces. A dielectric will always break down under severe stress, but an unstable metal–dielectric interface will generally cause an early breakdown and thereby shorten the dielectric lifetime. Therefore, it is important to understand the link behind dielectric degradation and interface stability in order to accurately estimate the operating lifetime of electronic devices. Here we will discuss some of the proposed mechanisms regarding this issue, and correlate them with the thermal and electrical stability results of the interfaces presented in the previous chapters.


Dielectric Film Dielectric Breakdown Dielectric Interface Diffusion Front Dielectric Capacitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    I.-C. Chen, S.E. Holland, C. Hu, Electrical breakdown in thin gate and tunneling oxides. IEEE J. Solid-St. Circ. 20(1), 333–342 (1985)CrossRefGoogle Scholar
  2. 2.
    J.W. McPherson, H.C. Mogul, Underlying physics of the thermochemical E model in describing low-field time-dependent dielectric breakdown in SiO2 thin films. J. Appl. Phys. 84, 1513–1523 (1998)CrossRefGoogle Scholar
  3. 3.
    J.W. McPherson, Determination of the nature of molecular bonding in silica from time-dependent dielectric breakdown data. J. Appl. Phys. 95(12), 8101–8109 (2004)CrossRefGoogle Scholar
  4. 4.
    J.W. McPherson, R.B. Khamankar, A. Shanware, Complementary model for intrinsic time-dependent dielectric breakdown in SiO2 dielectrics. J. Appl. Phys. 88(9), 5351–5359 (2000)CrossRefGoogle Scholar
  5. 5.
    J. Lee, I.C. Chen, C. Hu, Statistical modeling of silicon dioxide reliability. in IRPS, vol. 26, pp. 131–138 (1988)Google Scholar
  6. 6.
    J.R. Lloyd, E. Liniger, T.-M. Shaw, Simple model for time-dependent dielectric breakdown in inter- and intralevel low-k dielectric. J. Appl. Phys. 98(8), 084109 (2005)CrossRefGoogle Scholar
  7. 7.
    J. McPherson, V. Reddy, K. Banerjee, L. Huy, Comparison of E and 1/E TDDB models for SiO2 under long-term/low-field test conditions. in IEDM Technical Digest, (1998), pp. 171–174Google Scholar
  8. 8.
    R. Gonella, Key reliability issues for copper integration in damascene architecture. Microelectron. Eng. 55(1–4), 245–255 (2001)CrossRefGoogle Scholar
  9. 9.
    L. Zhao, Z. Tökei, K. Croes, C.J. Wilson, M. Baklanov, G.P. Beyer, C. Claeys, Direct observation of the 1/E dependence of time dependent dielectric breakdown in the presence of copper. Appl. Phys. Lett. 98, 032107 (1–3) (2011)Google Scholar
  10. 10.
    F. Chen, O. Bravo, K. Chanda, P. McLaughlin, T. Sullivan, J. Gill, J. Lloyd, R. Kontra, J. Aitken, A comprehensive study of low-k SiCOH TDDB phenomena and its reliability lifetime model development. inIRPS, vol. 44, pp. 46–53 (2006)Google Scholar
  11. 11.
    N. Suzumura, S. Yamamoto, D. Kodama, K. Makabe, J. Komori, E. Murakami, S. Maegawa, K. Kubota, A new TDDB degradation model based on Cu ion drift in Cu interconnect dielectrics. in IRPS, vol. 44, pp. 484–489 (2006) Google Scholar
  12. 12.
    A.S. Grove, Physics and Technology of Semiconductor Devices (Wiley, New York, 1967), p. 37 Google Scholar
  13. 13.
    W. Wu, X. Duan, J.S. Yuan, Modeling of time-dependent dielectric breakdown in copper metallization. IEEE Trans. Device Mater Rel. 3(2), 26–30 (2003)CrossRefGoogle Scholar
  14. 14.
    R.S. Achanta, W.N. Gill, J.L. Plawsky, Copper ion drift in integrated circuits: effect of boundary conditions on reliability and breakdown of low-k dielectric. J. Appl. Phys. 103(1), 014907 (2008)CrossRefGoogle Scholar
  15. 15.
    R.S. Achanta, J.L. Plawsky, W.N. Gill, A time dependent dielectric breakdown model for field accelerated low-k breakdown due to copper ions. Appl. Phys. Lett. 91(23), 234106 (2007)CrossRefGoogle Scholar
  16. 16.
    J. Kim, E.T. Ogawa, J.W. McPherson, Time dependent dielectric breakdown characteristics of low-k dielectric (SiOC) over a wide range of test areas and electric fields. in IRPS, vol. 45, pp. 399–404 (2007)Google Scholar
  17. 17.
    M. He, S. Novak, L. Vanamurthy, H. Bakhru, J. Plawsky, T.-M. Lu, Cu penetration into low-k dielectric during deposition and bias-temperature stress. Appl. Phys. Lett. 97(25), 252901 (2010)CrossRefGoogle Scholar
  18. 18.
    K. Maex, M.R. Baklanov, D. Shamiryan, F. lacopi, S.H. Brongersma, Z.S. Yanovitskaya, Low dielectric constant materials for microelectronics. J. Appl. Phys. 93(11), 8793–8841 (2003)CrossRefGoogle Scholar
  19. 19.
    C. Jezewski, W.A. Lanford, J.J. Senkevich, C.J. Wiegand, A. Mallikarjunan, D. Lu, G.-C. Wang, T.-M. Lu, C. Jin, Molecular Caulking™: a pore sealing chemical vapor deposited polymer for ultra-low k dielectrics. J. Electrochem. Soc. 151(7), F157–F161 (2004)Google Scholar
  20. 20.
    T. Tsuruoka, K. Terabe, T. Hasegawa, M. Aono, Forming and switching mechanisms of a cation-migration-based oxide resistive memory. Nanotechnology 21(42), 425205 (2010)CrossRefGoogle Scholar
  21. 21.
    J. Pushkar, S.J. Jasbir, A. Mallikarjunan, E.J. Rymaszewski, T.-M. Lu, Copper drift in high-dielectric-constant tantalum oxide thin films under bias temperature stress. Appl. Phys. Lett. 88(14), 143502 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Physics, Applied Physics and AstronomyRensselaer Polytechnic InstituteTroyUSA
  2. 2.Center for Integrated ElectronicsRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations