Skip to main content

Experimental Techniques

  • Chapter
  • First Online:
Book cover Metal-Dielectric Interfaces in Gigascale Electronics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 157))

Abstract

As discussed in the last chapter, metal atom diffusion and ion drift dictate the stability of the metal–dielectric interface. In order to study possible metal contamination inside dielectrics, many characterization methods have been developed. One technique is to detect the electrical response of the metal species inside dielectrics, such as the flatband voltage shift in a Capacitance–Voltage (C–V) measurement or the leakage current in a Current–Voltage (I–V) measurement. Electrical measurements provide a high sensitivity to ion penetration and a short turnaround time, but they are insensitive to neutral atomic contamination inside dielectrics. Also, because electrical methods are indirect, they can sometimes produce ambiguous results. A more direct way is to chemically identify these metal species inside dielectrics by using elemental detection techniques. These elemental methods rely on the fingerprints of elements, such as collision cross-section, atomic orbitals, and charge-mass ratio. In addition, elemental measurements can be used to profile the metal distribution inside dielectrics. In this chapter, we will begin with the introduction of some common test vehicles, followed by a discussion of some popular electrical and elemental characterization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.S. Haase, E.T. Ogawa, J.W. McPherson, Reliability analysis method for low-k interconnect dielectrics breakdown in integrated circuits. J. Appl. Phys. 98(3), 034503 (2005)

    Article  Google Scholar 

  2. C. Guedj, J.-F. Guillaumond, L. Arnaud, V. Arnal, M. Aimadeddine, G. Reimbold, J. Torres, Influence of the sidewall diffusion barrier on the transport properties of advanced Cu/low-k interconnects. Microelectron. Eng. 82, 374–379 (2005)

    Article  Google Scholar 

  3. N. Posseme, T. Chevolleau, O. Joubert, L. Vallier, P. Mangiagalli, Etching mechanisms of low-k SiOCH and selectivity to SiCH and SiO2 in fluorocarbon based plasmas. J. Vac. Sci. Technol. B 21, 2432–2440 (2003)

    Article  Google Scholar 

  4. P. Jain, J.S. Juneja, A. Mallikarjunan, E.J. Rymaszewski, T.-M. Lu, Copper drift in high-dielectric-constant tantalum oxide thin films under bias temperature stress. Appl. Phys. Lett. 88, 143502 (2006)

    Article  Google Scholar 

  5. E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

  6. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  7. Y. Ou, Electrical stability study of metal/dielectric systems. Dissertation, Rensselaer Polytechnic Institute, 2009

    Google Scholar 

  8. B.E. Deal, Standardized terminology for oxide charges associated with thermally oxidized silicon. IEEE Trans. Electron. Devices 27, 606–608 (1980)

    Article  Google Scholar 

  9. J.D. McBrayer, R.M. Swanson, T.W. Sigmon, Diffusion of metals in silicon dioxide. J. Electrochem. Soc. 133, 1242–1246 (1986)

    Article  Google Scholar 

  10. I. Ciofi, Z. Tőkei, M. Saglimbeni, M.V. Hove, Detection of copper and water in low-k dielectrics by triangular voltage sweep measurements. In Materials Research Society Symposium Proceedings, vol 914, San Francisco, 17–21 April 2006, p. F0202

    Google Scholar 

  11. K.-L. Fang, B.-Y. Tsui, Metal drift induced electrical instability of porous low dielectric constant film. J. Appl. Phys. 93, 5546–5550 (2003)

    Article  Google Scholar 

  12. N. Bhat, M. Cao, K.C. Saraswat, Bias temperature instability in hydrogenated thin-film transistors. IEEE Trans. Electron. Devices 44, 1102–1108 (1997)

    Article  Google Scholar 

  13. E. Yon, W.H. Ko, A.B. Kuper, Sodium distribution in thermal oxide on silicon by radiochemical and MOS analysis. IEEE Trans. Electron. Devices 13, 276–280 (1966)

    Article  Google Scholar 

  14. M. Kuhn, D.J. Silversmith, Ionic contamination and transport of mobile ions in MOS structures. J. Electrochem. Soc. 118, 966–970 (1971)

    Article  Google Scholar 

  15. A. Mallikarjunan, S.P. Murarka, T.-M. Lu, Separation of copper ion-induced and intrinsic polymer instabilities in polyarylether using triangular voltage sweep. J. Appl. Phys. 95, 1216–1221 (2004)

    Article  Google Scholar 

  16. H. Miyazaki, D. Kodama, TDDB lifetime of asymmetric patterns and its comprehension from percolation theory. In 47th International Reliability Physics Symposium Proceedings, 26–30 April 2009, pp. 814–818

    Google Scholar 

  17. J.W. McPherson, H.C. Mogul, Underlying physics of the thermochemical E model in describing low-field time-dependent dielectric breakdown in SiO2 thin films. J. Appl. Phys. 84, 1513–1523 (1998)

    Article  Google Scholar 

  18. J.R. Lloyd, E. Liniger, T.-M. Shaw, Simple model for time-dependent dielectric breakdown in inter- and intralevel low-k dielectrics. J. Appl. Phys. 98(8), 084109 (2005)

    Article  Google Scholar 

  19. I.-C. Chen, S.E. Holland, C. Hu, Electrical breakdown in thin gate and tunneling oxides. IEEE J Solid-State Circuit 20(1), 333–342 (1985)

    Article  Google Scholar 

  20. D.K. Schroder, Semiconductor Material and Device Characterization, 3rd edn. (Wiley, Hoboken, New Jersey, 2006), p. 663

    Google Scholar 

  21. Y. Ou, P.I. Wang, L.H. Vanamurthy, H. Bakhru, T.-M. Lu, G. Spencer, Thermal stability study of pore sealing using Parylene N. J. Electrochem. Soc. 155, H819–H822 (2008)

    Article  Google Scholar 

  22. D.K. Schroder, Semiconductor Material and Device Characterization, 3rd edn. (Wiley, Hoboken, New Jersey, 2006), p. 644

    Google Scholar 

  23. D.K. Schroder, Semiconductor Material and Device Characterization, 3rd edn. (Wiley, Hoboken, New Jersey, 2006), p. 654

    Google Scholar 

  24. S.A. Campbell, The Science and Engineering of Microelectronic Fabrication, 2nd edn. (Oxford University Press, New York, 2001), p. 57

    Google Scholar 

  25. R.G. Wilson, F.A. Stevie, C.W. Magee, Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, (Wiley, New York, 1989), p. 2.1–1

    Google Scholar 

  26. M. He, Y. Ou, P.-I. Wang, L.H. Vanamurthy, H. Bakhru, , T.-M. Lu, Barrier metal ions drift into porous low-k dielectrics under bias-temperature stress. In Materials Research Society Symposium Proceedings, vol 1249, San Francisco 2010, p. F0509

    Google Scholar 

  27. K. Yamada, N. Fujiyama, J. Sameshima, R. Kamoto, A. Karen, SIMS depth profile of copper in low-k dielectrics under electron irradiation for charge compensation. Appl. Surf. Sci. 203–204, 512–515 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming He .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

He, M., Lu, TM. (2012). Experimental Techniques. In: Metal-Dielectric Interfaces in Gigascale Electronics. Springer Series in Materials Science, vol 157. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1812-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1812-2_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1811-5

  • Online ISBN: 978-1-4614-1812-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics