FPGA-Accelerated Molecular Dynamics

Chapter

Abstract

Molecular dynamics simulation (MD) is one of the most important applications in computational science and engineering. Despite its widespread use, there exists a many order-of-magnitude gap between the demand and the performance currently achieved. Acceleration of MD has therefore received much attention. In this chapter, we discuss the progress made in accelerating MD using Field-Programmable Gate Arrays (FPGAs). We first introduce the algorithms and computational methods used in MD and describe the general issues in accelerating MD. In the core of this chapter, we show how to design an efficient force computation pipeline for the range-limited force computation, the most time-consuming part of MD and the most mature topic in FPGA acceleration of MD. We discuss computational techniques and simulation quality and present efficient filtering and mapping schemes. We also discuss overall design, host–accelerator interaction and other board-level issues. We conclude with future challenges and the potential of production FPGA-accelerated MD.

Keywords

SPME 

Notes

Acknowledgments

This work was supported in part by the NIH through award #R01-RR023168-01A1 and by the MGHPCC.

References

  1. 1.
    S.A. Adcock, J.A. McCammon, Molecular dynamics: survey of methods for simulating the activity of proteins. Chem. Rev. 106(5), 1589–1615 (2006)CrossRefGoogle Scholar
  2. 2.
    J.A. Anderson, C.D. Lorenz, A. Travesset, General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Comput. Phys. 227(10), 5342–5359 (2008)CrossRefMATHGoogle Scholar
  3. 3.
    R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons, A. Simpson, A. Trew, A. McCormick, G. Smart, R. Smart, A. Cantle, R. Chamberlain, G. Genest, Maxwell - a 64 FPGA supercomputer, in Second NASA/ESA Conference on Adaptive Hardware and Systems (AHS) (2007), IEEE Computer Society, Washington, DC, USA, pp. 287–294Google Scholar
  4. 4.
    K.J. Bowers, E. Chow, H. Xu, R.O. Dror, M.P. Eastwood, B.A. Gregersen, J.L. Klepeis, I. Kolossvary, M.A. Moraes, F.D. Sacerdoti, J.K. Salmon, Y. Shan, D.E. Shaw, Scalable algorithms for molecular dynamics simulations on commodity clusters, in Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (SC) (2006), ACM New York, NY, USA, pp. 84:1–84:13Google Scholar
  5. 5.
    B.R. Brooks, C.L. Brooks III, A.D. Mackerell Jr., L. Nilsson, R.J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A.R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R.W. Pastor, C.B. Post, J.Z. Pu, M. Schaefer, B. Tidor, R.M. Venable, H.L. Woodcock, X. Wu, W. Yang, D.M. York, M. Karplus, CHARMM: the biomolecular simulation program. J. Comput. Chem. 30(10, Sp. Iss. SI), 1545–1614 (2009)Google Scholar
  6. 6.
    D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz Jr., A. Onufriev, C. Simmerling, B. Wang, R.J. Woods, The Amber biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005)CrossRefGoogle Scholar
  7. 7.
    M. Chiu, M.C. Herbordt, Efficient particle-pair filtering for acceleration of molecular dynamics simulation, in International Conference on Field Programmable Logic and Applications (FPL) (2009), ACM New York, NY, USA, pp. 345–352Google Scholar
  8. 8.
    M. Chiu, M.C. Herbordt, Molecular dynamics simulations on high-performance reconfigurable computing systems. ACM Trans. Reconfigurable Tech. Syst. (TRETS) 3(4), 23:1–23:37 (2010)Google Scholar
  9. 9.
    M. Chiu, M.A. Khan, M.C. Herbordt, Efficient calculation of pairwise nonbonded forces, in The 19th Annual International IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM) (2011), IEEE Computer Society Washington, DC, USA, pp. 73–76Google Scholar
  10. 10.
    S. Chiu, Accelerating molecular dynamics simulations with high-performance reconfigurable systems, PhD dissertation, Boston University, USA, 2011Google Scholar
  11. 11.
    T. Darden, D. York, L. Pedersen, Particle mesh Ewald: an N.log (N) method for Ewald sums in large systems. J. Chem. Phys. 98(12), 10089–10092 (1993)Google Scholar
  12. 12.
    W.A. Eaton, V. Muñoz, P.A. Thompson, C.K. Chan, J. Hofrichter, Submillisecond kinetics of protein folding. Curr. Opin. Struct. Biol. 7(1), 10–14 (1997)CrossRefGoogle Scholar
  13. 13.
    R.D. Engle, R.D. Skeel, M. Drees, Monitoring energy drift with shadow Hamiltonians. J. Comput. Phys. 206(2), 432–452 (2005)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    P.L. Freddolino, A.S. Arkhipov, S.B. Larson, A. McPherson, K. Schulten, Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure 14(3), 437–449 (2006)CrossRefGoogle Scholar
  15. 15.
    Gidel, Gidel website (2009), http://www.gidel.com. Accessed 17 April 2012
  16. 16.
    GROMACS, GROMACS installation instructions for GPUs (2012), http://www.gromacs.org/Downloads/Installation_Instructions/GPUs. Accessed 17 April 2012
  17. 17.
    Y. Gu, M.C. Herbordt, FPGA-based multigrid computation for molecular dynamics simulations, in 15th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM) (2007), pp. 117–126Google Scholar
  18. 18.
    Y. Gu, T. Vancourt, M.C. Herbordt, Explicit design of FPGA-based coprocessors for short-range force computations in molecular dynamics simulations. Parallel Comput. 34(4–5), 261–277 (2008)CrossRefGoogle Scholar
  19. 19.
    D.J. Hardy, NAMD-Lite (2007), http://www.ks.uiuc.edu/Development/MDTools/namdlite/. University of Illinois at Urbana-Champaign. Accessed 17 April 2012
  20. 20.
    M. Herbordt, M. Khan, Communication requirements of fpga-centric molecular dynamics, in Proceedings of the Symposium on Application Accelerators for High Performance Computing (2012)Google Scholar
  21. 21.
    B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theor. Comput. 4(3), 435–447 (2008)CrossRefGoogle Scholar
  22. 22.
    R. Hockney, S. Goel, J. Eastwood, Quiet high-resolution computer models of a plasma. J. Comput. Phys. 14(2), 148–158 (1974)CrossRefGoogle Scholar
  23. 23.
    L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, K. Schulten, NAMD2: Greater scalability for parallel molecular dynamics. J. Comput. Phys. 151, 283–312 (1999)CrossRefMATHGoogle Scholar
  24. 24.
    S. Kasap, K. Benkrid, A high performance implementation for molecular dynamics simulations on a FPGA supercomputer, in 2011 NASA/ESA Conference on Adaptive Hardware and Systems (AHS) (2011), IEEE Computer Society Washington, DC, USA, pp. 375–382Google Scholar
  25. 25.
    F. Khalili-Araghi, E. Tajkhorshid, K. Schulten, Dynamics of K+ ion conduction through Kv1.2. Biophys. J. 91(6), 72–76 (2006)Google Scholar
  26. 26.
    V. Kindratenko, D. Pointer, A case study in porting a production scientific supercomputing application to a reconfigurable computer, in 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM) (2006), IEEE Computer Society Washington, DC, USA, pp. 13–22Google Scholar
  27. 27.
    S. Kumar, C. Huang, G. Zheng, E. Bohm, A. Bhatele, J.C. Phillips, H. Yu, L.V. Kalé, Scalable molecular dynamics with NAMD on the IBM Blue Gene/L system. IBM J. Res. Dev. 52(1–2), 177–188 (2008)CrossRefGoogle Scholar
  28. 28.
    R. Larson, J. Salmon, R. Dror, M. Deneroff, C. Young, J. Grossman, Y. Shan, J. Klepeis, D. Shaw, High-throughput pairwise point interactions in Anton, a specialized machine for molecular dynamics simulation, in IEEE 14th International Symposium on High Performance Computer Architecture (HPCA) (2008), IEEE Computer Society Washington, DC, USA, pp. 331–342Google Scholar
  29. 29.
    S. Lee, An FPGA implementation of the Smooth Particle Mesh Ewald reciprocal sum compute engine, Master’s thesis, The University of Toronto, Canada, 2005Google Scholar
  30. 30.
    A.D. MacKerell, N. Banavali, N. Foloppe, Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56(4), 257–265 (2000)CrossRefGoogle Scholar
  31. 31.
    G. Moraitakis, A.G. Purkiss, J.M. Goodfellow, Simulated dynamics and biological macromolecules. Rep. Progr. Phys. 66(3), 383 (2003)Google Scholar
  32. 32.
    T. Narumi, Y. Ohno, N. Futatsugi, N. Okimoto, A. Suenaga, R. Yanai, M. Taiji, A high-speed special-purpose computer for molecular dynamics simulations: MDGRAPE-3. NIC Workshop, From Computational Biophysics to Systems Biology, NIC Series, vol. 34 (2006), pp. 29–36Google Scholar
  33. 33.
    L. Nilsson, Efficient table lookup without inverse square roots for calculation of pair wise atomic interactions in classical simulations. J. Comput. Chem. 30(9), 1490–1498 (2009)CrossRefGoogle Scholar
  34. 34.
    J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kalé, K. Schulten, Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)CrossRefGoogle Scholar
  35. 35.
    J.C. Phillips, J.E. Stone, K. Schulten, Adapting a message-driven parallel application to GPU-accelerated clusters, in Proceedings of the ACM/IEEE Conference on Supercomputing (SC) (2008), IEEE Press Piscataway, NJ, USA, pp. 8:1–8:9Google Scholar
  36. 36.
    L. Phillips, R.S. Sinkovits, E.S. Oran, J.P. Boris, The interaction of shocks and defects in Lennard-Jones crystals. J. Phys.: Condens. Matter 5(35), 6357–6376 (1993)Google Scholar
  37. 37.
    S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)CrossRefMATHGoogle Scholar
  38. 38.
    J.W. Ponder, D.A. Case, Force fields for protein simulations. Adv. Protein Chem. 66, 27–85 (2003)CrossRefGoogle Scholar
  39. 39.
    D.C. Rapaport, The Art of Molecular Dynamics Simulation, 2nd edn. (Cambridge University Press, London, 2004)CrossRefMATHGoogle Scholar
  40. 40.
    P. Schofield, Computer simulation studies of the liquid state. Comp. Phys. Comm. 5(1), 17–23 (1973)CrossRefGoogle Scholar
  41. 41.
    R. Scrofano, M. Gokhale, F. Trouw, V.K. Prasanna, A hardware/software approach to molecular dynamics on reconfigurable computers, in The 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM) (2006), IEEE Computer Society Washington, DC, USA, pp. 23–34Google Scholar
  42. 42.
    Y. Shan, J. Klepeis, M. Eastwood, R. Dror, D. Shaw, Gaussian split Ewald: a fast Ewald mesh method for molecular simulation. J. Chem. Phys. 122(5), 54101:1–54101:13 (2005)Google Scholar
  43. 43.
    D.E. Shaw, M.M. Deneroff, R.O. Dror, J.S. Kuskin, R.H. Larson, J.K. Salmon, C. Young, B. Batson, K.J. Bowers, J.C. Chao, M.P. Eastwood, J. Gagliardo, J.P. Grossman, C.R. Ho, D.J. Ierardi, I. Kolossváry, J.L. Klepeis, T. Layman, C. McLeavey, M.A. Moraes, R. Mueller, E.C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles, S.C. Wang, Anton, a special-purpose machine for molecular dynamics simulation, in Proceedings of the 34th Annual International Symposium on Computer Architecture (ISCA) (2007), ACM New York, NY, USA, pp. 1–12Google Scholar
  44. 44.
    D.E. Shaw, M.M. Deneroff, R.O. Dror, J.S. Kuskin, R.H. Larson, J.K. Salmon, C. Young, B. Batson, K.J. Bowers, J.C. Chao, M.P. Eastwood, J. Gagliardo, J.P. Grossman, C.R. Ho, D.J. Ierardi, I. Kolossváry, J.L. Klepeis, T. Layman, C. McLeavey, M.A. Moraes, R. Mueller, E.C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles, S.C. Wang, Anton, a special-purpose machine for molecular dynamics simulation. Comm. ACM 51(7), 91–97 (2008)CrossRefGoogle Scholar
  45. 45.
    D.E. Shaw, R.O. Dror, J.K. Salmon, J.P. Grossman, K.M. Mackenzie, J.A. Bank, C. Young, M.M. Deneroff, B. Batson, K.J. Bowers, E. Chow, M.P. Eastwood, D.J. Ierardi, J.L. Klepeis, J.S. Kuskin, R.H. Larson, K. Lindorff-Larsen, P. Maragakis, M.A. Moraes, S. Piana, Y. Shan, B. Towles, Millisecond-scale molecular dynamics simulations on Anton, in Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (SC) (2009), ACM New York, NY, USA, pp. 39:1–39:11Google Scholar
  46. 46.
    R.D. Skeel, I. Tezcan, D.J. Hardy, Multiple grid methods for classical molecular dynamics. J. Comput. Chem. 23(6), 673–684 (2002)CrossRefGoogle Scholar
  47. 47.
    M. Snir, A note on N-body computations with cutoffs. Theor. Comput. Syst. 37(2), 295–318 (2004)CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    J.E. Stone, J.C. Phillips, P.L. Freddolino, D.J. Hardy, L.G. Trabuco, K. Schulten, Accelerating molecular modeling applications with graphics processors. J. Comput. Chem. 28(16), 2618–2640 (2007)CrossRefGoogle Scholar
  49. 49.
    L. Verlet, Computer “Experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159(1), 98–103 (1967)Google Scholar
  50. 50.
    C. Young, J.A. Bank, R.O. Dror, J.P. Grossman, J.K. Salmon, D.E. Shaw, A 32x32x32, spatially distributed 3D FFT in four microseconds on Anton, in Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (SC) (2009), ACM New York, NY, USA, pp. 23:1–23:11Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Boston UniversityBostonUSA

Personalised recommendations