Skip to main content

In Vivo Cerebral 31P Magnetic Resonance Spectroscopy

  • Chapter
  • First Online:
Neural Metabolism In Vivo

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 4))

Abstract

This chapter summarises the achievements of in-vivo phosphorus magnetic resonance spectroscopy (31P MRS) in the study of brain metabolism. The metabolites detectable by 31P MRS are described as also are the techniques used for spectrum analysis, signal localization and assessment of measures such as intracellular pH and magnesium. Many pathological applications of 31P MRS are also covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman JJH, Grove TH, Wong GG, Gadian DG, Radda GK (1980) Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature 5743:167–170

    Google Scholar 

  • Ackerman JJH, Evelhoch JL, Berkowitz BA, Kichura GM (1984) Selective suppression of the cranial bone resonance from 31P NMR experiments with rat brain in vivo. J Magn Reson 56:318–322

    CAS  Google Scholar 

  • Adcock KH, Nedelcu J, Loenneker T, Martin E, Walliman T, Wagner BP (2002) Neuroprotection of creatine-supplementation in neonatal rats with transient cerebral hypoxia-ischemia. Dev Neurosci 24:383–388

    Google Scholar 

  • Albers MJ, Krieger MD, Gonzalez-Gomez I, Gilles FH, McComb JG, Nelson MD, Bluml S (2005) Proton-decoupled 31P MRS in untreated pediatric brain tumors. Magn Reson Med 53:22–29

    PubMed  Google Scholar 

  • Allen KL, Busza AL, Proctor E, King MD, Williams SR, Crockard HA, Gadian DG (1993) Controllable graded cerebral ischaemia in the gerbil: studies of cerebral blood flow and energy metabolism by hydrogen clearance and 31P NMR spectroscopy. NMR Biomed 6:181–186

    PubMed  CAS  Google Scholar 

  • Azzopardi D, Wyatt JS, Hamilton PA, Cady EB, Delpy DT, Hope PL, Reynolds EOR (1989a) Phosphorus metabolites and intracellular pH in the brains of normal and small-for-gestational age infants investigated by magnetic resonance spectroscopy. Pediatr Res 25:440–444

    PubMed  CAS  Google Scholar 

  • Azzopardi D, Wyatt JS, Cady EB, Delpy DT, Baudin J, Stewart AL, Hope PL, Hamilton PA, Reynolds EOR (1989b) Prognosis of newborn infants with hypoxic-ischemic brain injury assessed by phosphorus magnetic resonance spectroscopy. Pediatr Res 25:445–451

    PubMed  CAS  Google Scholar 

  • Baiden-Amissah K, Joashi U, Blumberg R, Mehmet H, Edwards AD, Cox PM (1998) Expression of amyloid precursor protein (β-APP) in the neonatal brain following hypoxic-ischaemic injury. Neuropath App Neurobiol 24:346–352

    CAS  Google Scholar 

  • Bates TE, Williams SR, Gadian DG (1989) Phosphodiesters in the liver: the effect of field strength on the 31P signal. Magn Reson Med 12:145–150

    PubMed  CAS  Google Scholar 

  • Bischof MG, Mlynarik V, Brehm A, Bernroider E, Krssak M, Bauer E, Madl C, Bayerle-Eder M, Waldhausl W, Roden M (2004) Brain energy metabolism during hypoglycaemia in healthy and type I diabetic subjects. Diabetologia 47:648–651

    PubMed  CAS  Google Scholar 

  • Bluml S, Seymour KJ, Ross BD (1999) Developmental changes in choline- and ethanolamine-containing compounds measured with proton-decoupled 31P MRS in in vivo human brain. Magn Reson Med 42:643–654

    PubMed  CAS  Google Scholar 

  • Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann New York Acad Sci 508:333–348

    CAS  Google Scholar 

  • Bottomley PA, Charles HC, Roemer PB, Flamig D, Engelseth H, Edelstein WA, Mueller OM (1988) Human in vivo phosphate metabolite imaging with 31P NMR. Magn Reson Med 7:319–336

    PubMed  CAS  Google Scholar 

  • Buchli R, Martin E, Boesiger P, Rumpel H (1994a) Developmental changes of phosphorus metabolite concentrations in the human brain: a 31P magnetic resonance spectroscopy study in vivo. Pediatr Res 35:431–435

    PubMed  CAS  Google Scholar 

  • Buchli R, Martin E, Boesiger P (1994b) Comparison of calibration strategies for the in vivo determination of absolute metabolite concentrations in the human brain by 31P MRS. NMR Biomed 7:225–230

    PubMed  CAS  Google Scholar 

  • Burri R, Lazeyras F, Aue WP, Straehl P, Bigler P, Althaus U, Herschkowitz N (1988) Correlation between 31P NMR phosphomonoester and biochemically determined phosphorylethanolamine and phosphatidylethanolamine during development of the rat brain. Dev Neurosci 10:213–221

    PubMed  CAS  Google Scholar 

  • Cady EB (1991) A reappraisal of the absolute concentrations of phosphorylated metabolites in the human neonatal cerebral cortex obtained by fitting Lorentzian curves to the 31P NMR spectrum. J Magn Reson 91:637–643

    CAS  Google Scholar 

  • Cady EB (1995) Quantitative combined phosphorus and proton PRESS of the brains of newborn human infants. Magn Reson Med 33:557–563

    PubMed  CAS  Google Scholar 

  • Cady EB, Wilkie DR (1986) Estimation of cerebral intracellular pH by 31P and 1H nuclear magnetic resonance spectroscopy. In: Rolfe P (ed) Neonatal physiological measurements. Butterworths, London, pp 373–381

    Google Scholar 

  • Cady EB, Wylezinska M, Penrice J, Lorek A, Amess P (1996) Quantitation of phosphorus metabolites in newborn human brain using internal water as reference standard. Magn Reson Imaging 14:293–304

    PubMed  CAS  Google Scholar 

  • Carroll RC, Edelheit EB, Schmidt PG (1980) Phosphorus nuclear magnetic resonance of bovine platelets. Biochemistry 19:3861–3867

    PubMed  CAS  Google Scholar 

  • Chapman AG, Westerberg E, Siesjo BK (1981) The metabolism of purine and pyrimidine nucleotides in rat cortex during insulin-induced hypoglycemia and recovery. J Neurochem 36:179–189

    PubMed  CAS  Google Scholar 

  • Choi I-Y, Tkac I, Gruetter R (2000) Single-shot, three-dimensional “non-echo” localization method for in vivo NMR spectroscopy. Magn Reson Med 44:387–394

    PubMed  CAS  Google Scholar 

  • Cohn M, Hughes TR (1962) Nuclear magnetic resonance spectra of adenosine di- and triphosphate. II. Effect of complexing with divalent metal ions. J Biol Chem 237:176–181

    PubMed  CAS  Google Scholar 

  • Connelly A, Counsell C, Lohman JAB, Ordidge RJ (1988) Outer volume suppressed image related in vivo spectroscopy (OSIRIS), a high-sensitivity localization technique. J Magn Reson 78:519–525

    Google Scholar 

  • Corbett RJT, Laptook AR, Nunnally RL (1987) The use of the chemical shift of the phosphomonoester P-31 magnetic resonance peak for the determination of intracellular pH in the brains of neonates. Neurology 37:1771–1779

    PubMed  CAS  Google Scholar 

  • Corbett RJ, Laptook AR, Hassan A, Nunnally RL (1988) Quantitation of acidosis in neonatal brain tissue using the 31P NMR resonance peak of phosphoethanolamine. Magn Reson Med 6:99–106

    PubMed  CAS  Google Scholar 

  • Corbett RJT, Laptook AR (1994) Age-related changes in swine brain creatine kinase-catalyzed 31P exchange measured in vivo using 31P NMR magnetization transfer. J Cereb Blood Flow Metab 14:1070–1077

    PubMed  CAS  Google Scholar 

  • De Graff RA, Luo Y, Garwood M, Nicolay K (1996) B1-insensitive, single-shot localization and water suppression. J Magn Reson B 113:35–45

    Google Scholar 

  • Deicken DF, Weiner MW, Fein G (1995a) Decreased temporal lobe phosphomonoesters in bipolar disorder. J Affect Disord 33:195–199

    PubMed  CAS  Google Scholar 

  • Deicken RF, Fein G, Weiner MW (1995b) Abnormal frontal lobe phosphorus metabolism in bipolar disorder. Am J Psychiatry 152:915–918

    PubMed  CAS  Google Scholar 

  • Dorsey CM, Lukas SE, Moore CM, Tartarini WL, Parow AM, Villafuerte RA, Renshaw PF (2003) Phosphorous31 magnetic resonance spectroscopy after total sleep deprivation in healthy adult men. Sleep 26:573–577

    PubMed  Google Scholar 

  • Du F, Zhu XH, Qiao H, Zhang X, Chen W (2007) Efficient in vivo 31P magnetization transfer approach for noninvasively determining multiple kinetic parameters and metabolic fluxes of ATP metabolism in the human brain. Magn Reson Med 57:103–114

    PubMed  CAS  Google Scholar 

  • Estilaei MR, Matson GB, Payne GS, Leach MO, Fein G, Meyerhoff DJ (2001a) Effects of chronic alcohol consumption on the broad phospholipid signal in human brain: an in vivo 31P MRS study. Alcohol Clin Exp Res 25:89–97

    PubMed  CAS  Google Scholar 

  • Estilaei MR, Matson GB, Payne GS, Leach MO, Fein G, Meyerhoff DJ (2001b) Effects of abstinence from alcohol on the broad phospholipid signal in human brain: an in vivo 31P magnetic resonance spectroscopy study. Alcohol Clin Exp Res 25:1213–1220

    PubMed  CAS  Google Scholar 

  • Forester BP, Berlow YA, Harper DG, Jensen JE, Lange N, Froimowitz MP, Ravichandran C, Iosifescu DV, Lukas SE, Renshaw PF, Cohen BM (2010) Age-related changes in brain energetics and phospholipid metabolism. NMR Biomed 23:242–250

    PubMed  CAS  Google Scholar 

  • Frahm J, Merboldt KD, Hanicke W (1987) Localized proton spectroscopy using stimulated echoes. J Magn Reson 72:502–508

    CAS  Google Scholar 

  • Gabr RE, Ouwerkerk R, Bottomley PA (2006) Quantifying in vivo MR spectra with circles. J Magn Reson 179:152–163

    PubMed  CAS  Google Scholar 

  • Garlick PB, Soboll S, Bullock GR (1992) Evidence that mitochondrial phosphate is visible in 31P spectra of isolated, perfused rat hearts. NMR Biomed 5:29–36

    PubMed  CAS  Google Scholar 

  • Gee JB, Corbett RJT, Perlman J, Laptook AR (2004) The effects of systemic magnesium sulfate infusion on brain magnesium concentrations and energy state during hypoxia-ischemia in newborn miniswine. Pediatr Res 55:93–100

    PubMed  CAS  Google Scholar 

  • Gilboe DD, Kintner DB, Anderson ME, Fitzpatrick JH (1998) NMR-based identification of intra- and extracellular compartments of the brain Pi peak. J Neurochem 71:2542–2548

    PubMed  CAS  Google Scholar 

  • Glonek T, Kopp SJ, Kot E, Pettegrew JW, Harrison WH, Cohen MM (1982) P-31 nuclear magnetic resonance analysis of brain: the perchloric acid extract spectrum. J Neurochem 39:1210–1219

    PubMed  CAS  Google Scholar 

  • Glonek T, Kopp SJ (1985) Ex vivo P-31 NMR of lens, cornea, heart, and brain. Magn Reson Imaging 3:359–376

    PubMed  CAS  Google Scholar 

  • Gonen O, Mohebbi A, Stoyanova R, Brown TR (1997) In vivo phosphorus polarization transfer and decoupling from protons in three-dimensional localized nuclear magnetic resonance spectroscopy of human brain. Magn Reson Med 37:301–306

    PubMed  CAS  Google Scholar 

  • Graulich J, Hoffmann U, Maier RF, Ruscher K, Pomper JK, Ho HK, Gabriel S, Obladen M, Heinemann U (2002) Acute neuronal injury after hypoxia is influenced by the reoxygenation mode in juvenile hippocampal slice cultures. Dev Brain Res 137:35–42

    CAS  Google Scholar 

  • Gunzel D, Schlue WR (1996) Sodium-magnesium antiport in Retzius neurones of the leech Hirudo medicinalis. J Physiol 491:595–608

    PubMed  Google Scholar 

  • Gupta RJ, Benovic JL, Rose ZB (1978) The determination of the free-magnesium level in the human red blood cell by 31P NMR. J Biol Chem 253:6172–6176

    PubMed  CAS  Google Scholar 

  • Haase A, Odoj F, von Kienlin M, Warnking J, Fidler F, Weisser A, Nittka M, Rommel E, Lanz T, Kalusche B, Griswold M (2000) NMR probeheads for in-vivo applications. Concepts Magn Reson 12:361–388

    CAS  Google Scholar 

  • Hamakama H, Murashita J, Yamada N, Inubushi T, Kato N, Kato T (2004) Reduced intracellular pH in the basal ganglia and whole brain measured by 31P-MRS in bipolar disorder. Psychiatry Clin Neurosci 58:82–88

    Google Scholar 

  • Helpern JA, Vande Linde AM, Welch KM, Levine SR, Schultz LR, Ordidge RJ, Halvorson HR, Hugg JW (1993) Acute elevation and recovery of intracellular [Mg2+] following human focal cerebral ischemia. Neurology 43:1577–1581

    PubMed  CAS  Google Scholar 

  • Henchcliffe C, Shungu DC, Mao X, Huang C, Nirenberg MJ, Jenkins BG, Beal MF (2008) Multinuclear magnetic resonance spectroscopy for in vivo assessment of mitochondrial dysfunction in Parkinson’s disease. Ann NY Acad Sci 1147:206–220

    PubMed  CAS  Google Scholar 

  • Hetherington HP, Spencer DD, Vaughan JT, Pan JW (2001) Quantitative 31P spectroscopic imaging of human brain at 4 Tesla: Assessment of gray and white matter differences of phosphocreatine and ATP. Magn Reson Med 45:46–52

    PubMed  CAS  Google Scholar 

  • Hetherington HP, Pan JW, Spencer DD (2002) 1H and 31P spectroscopy and bioenergetics in the lateralization of seizures in temporal lobe epilepsy. J Magn Reson Imaging 16:477–483

    PubMed  Google Scholar 

  • Hetherington HP, Kim JH, Pan JW, Spencer DD (2004) 1H and 31P spectroscopic imaging of epilepsy: spectroscopic and histologic correlations. Epilepsia 45(suppl 4):17–23

    PubMed  Google Scholar 

  • Hida K, Kwee IL, Nakada T (1992a) T1 values of phosphomonoester and phosphocreatine of brain show no significant change during development. Magn Reson Med 27:179–182

    PubMed  CAS  Google Scholar 

  • Hida K, Kwee IL, Nakada T (1992b) In vivo 1H and 31P NMR spectroscopy of the developing rat brain. Magn Reson Med 23:31–36

    PubMed  CAS  Google Scholar 

  • Hoang TQ, Bluml S, Dubowitz DJ, Moats R, Kopyov O, Jacques D, Ross BD (1998) Quantitative proton-decoupled 31P MRS and 1H MRS in the evaluation of Huntington’s and Parkinson’s diseases. Neurology 50:1033–1040

    PubMed  CAS  Google Scholar 

  • Holtzman D, Mulkern R, Tsuji M, Cook C, Meyers R (1996) Phosphocreatine and creatine kinase in piglet cerebral gray and white matter in situ. Devel Neurosci 18:535–541

    CAS  Google Scholar 

  • Holtzman D, Mulkern R, Meyers R, Cook C, Allred E, Khait I, Jensen F, Tsuji M, Laussen P (1998) In vivo phosphocreatine and ATP in piglet cerebral gray and white matter during seizures. Brain Res 783:19–27

    PubMed  CAS  Google Scholar 

  • Hope PL, Costello AM de L, Cady EB, Delpy DT, Tofts PS, Chu A, Hamilton PA, Reynolds EOR, Wilkie DR (1984). Cerebral energy metabolism studied with phosphorus NMR spectroscopy in normal and birth-asphyxiated infants. Lancet 2: 366-370.

    Google Scholar 

  • Hoult DI, Richards RE (1976) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24:71–85

    Google Scholar 

  • Hu MT, Taylor-Robinson SD, Chaudhuri KR, Bell JD, Labbe C, Cunningham VJ, Koepp MJ, Hammers A, Morris RG, Turjanski N, Brooks DJ (2000) Cortical dysfunction in non-demented Parkinson’s disease patients: a combined (31)P-MRS and (18)FDG-PET study. Brain 123(part 2): 340–352

    PubMed  Google Scholar 

  • Hubesch B, Sappey-Marinier D, Roth K, Meyerhoff DJ, Matson GB, Weiner MW (1990) 31P NMR spectroscopy of normal human brain and brain tumors. Radiology 174:401–409

    PubMed  CAS  Google Scholar 

  • Hugg JW, Matson GB, Twieg DB, Sappey-Marinier D, Weiner MW (1992) Phosphorus-31 MR spectroscopic imaging (MRSI) of normal and pathological human brains. Magn Reson Imaging 10:227–243

    PubMed  CAS  Google Scholar 

  • in ‘t Zandt HJ, de Groof AJ, Renema WK, Oerlemans FT, Klomp DW, Wieringa B, Heerschap A (2003) Presence of (phospho)creatine in developing and adult skeletal muscle of mice without mitochondrial and cytosolic muscle creatine kinase isoforms. J Physiol 548:847–858

    PubMed  Google Scholar 

  • in ‘t Zandt HJ, Renema WK, Streijger F, Jost C, Klomp DW, Oerlemans F, Van der Zee CE, Wieringa B, Heerschap A (2004) Cerebral creatine kinase deficiency influences metabolite levels and morphology in the mouse brain: a quantitative in vivo 1H and 31P magnetic resonance study. J Neurochem 90:1321–1330

    PubMed  Google Scholar 

  • Iwata O, Iwata S, Bainbridge A, De Vita E, Matsuishi T, Cady EB, Robertson NJ (2008) Supra- and sub-baseline PCr recovery in developing brain after transient hypoxia-ischaemia: relation to baseline energetics, insult severity and outcome. Brain 131:2220–2226

    Google Scholar 

  • Jensen JE, Drost DJ, Menon RS, Williamson PC (2002) In vivo brain 31P-MRS: measuring the phospholipid resonances at 4 Tesla from small voxels. NMR Biomed 15:338–347

    PubMed  CAS  Google Scholar 

  • Jensen JE, Miller J, Williamson PC, Neufeld RW, Menon RS, Malla A, Manchanda R, Schaefer B, Densmore M, Drost DJ (2004) Focal changes in brain energy and phospholipid metabolism in first-episode schizophrenia: 31P-MRS chemical shift imaging study at 4 Tesla. Br J Psychiatry 184:409–415

    PubMed  Google Scholar 

  • Jensen JE, Miller J, Williamson PC, Neufeld RW, Menon RS, Malla A, Manchanda R, Schaefer B, Densmore M, Drost DJ (2006) Grey and white matter differences in brain energy metabolism in first episode schizophrenia: 31P-MRS chemical shift imaging at 4 Tesla. Psychiatry Res 146:127–135

    PubMed  CAS  Google Scholar 

  • Jung W-I, Widmaier S, Bunse M, Seeger U, Straubinger K, Schick F, Kuper K, Dietze G, Lutz O (1993) 31P transverse relaxation times of ATP in human brain in vivo. Magn Reson Med 30:741–743

    PubMed  CAS  Google Scholar 

  • Jung W-I, Staubert A, Widmaier S, Hoess T, Bunse M, van Erckelens F, Dietze G, Lutz O (1997) Phosphorus J-coupling constants of ATP in human brain. Magn Reson Med 37:802–804

    PubMed  CAS  Google Scholar 

  • Keshavan MS, Stanley JA, Montrose DM, Minshew NJ, Pettegrew JW (2003) Prefrontal membrane phospholipid metabolism of child and adolescent offspring at risk for schizophrenia or schizoaffective disorder; an in vivo 31P MRS study. Mol Psychiatry 8:316–323

    PubMed  CAS  Google Scholar 

  • Klemm S, Rzanny R, Riehemann S, Volz HP, Schmidt B, Gerhard UC, Schonberg A, Mentzel HJ, Kaiser WA, Blanz B (2001) Cerebral phosphate metabolism in first-degree relatives of patients with schizophrenia. Am J Psychiatry 158:958–960

    PubMed  CAS  Google Scholar 

  • Kreis R, Slotboom J, Pietz J, Jung B, Boesch C (2001) Quantitation of localized 31P magnetic resonance spectra based on the reciprocity principle. J Magn Reson 149:245–250

    PubMed  CAS  Google Scholar 

  • Kuby SA, Noltmann EA (1962) ATP-creatine transphosphorylase. In: Boyer PD, Lardy H, Myrback K (eds) The enzymes, vol 6, 2nd edn. Academic, New York, pp 515–603

    Google Scholar 

  • Lara RS, Matson GB, Hugg JW, Maudsley AA, Weiner MW (1993) Quantitation of in vivo phosphorus metabolites in human brain with magnetic resonance spectroscopic imaging (MRSI). Magn Reson Imaging 11:273–278

    PubMed  CAS  Google Scholar 

  • Le Rumeur E (1992) Saturation transfer and its application to study biochemical kinetics. In: de Certaines JD, Bovee WMMJ, Podo F (eds) Magnetic resonance spectroscopy in biology and medicine. Pergamon, Oxford, pp 169–173

    Google Scholar 

  • Lei H, Zhu X-H, Zhang X-L, Ugurbil K, Chen W (2003a) In vivo 31P magnetic resonance spectroscopy of human brain at 7 T: an initial experience. Magn Reson Med 49:199–205

    PubMed  CAS  Google Scholar 

  • Lei H, Ugurbil K, Chen W (2003b) Measurement of unidirectional Pi to ATP flux in human visual cortex at 7 T by using in vivo 31P magnetic resonance spectroscopy. Proc Nat Acad Sci USA 100:14409–14414

    PubMed  CAS  Google Scholar 

  • Lodi R, Schapira AH, Manners D, Styles P, Wood NW, Taylor DJ, Warner TT (2000) Abnormal in vivo skeletal muscle energy metabolism in Huntington’s disease and dentatorubropallidoluysian atrophy. Ann Neurol 48:72–76

    PubMed  CAS  Google Scholar 

  • Lorek A, Takei Y, Cady EB, Wyatt JS, Penrice J, Edwards AD, Peebles D, Wylezinska M, Owen-Reece H, Kirkbride V, Cooper C, Aldridge RF, Roth SC, Brown G, Delpy DT, Reynolds EOR (1994) Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy. Pediatr Res 36:99–706

    Google Scholar 

  • Luyten PR, Bruntink G, Sloff FM, Vermeulen JWAH, van der Heijden JI, den Hollander JA, Heerschap A (1989a) Broadband proton decoupling in human 31P NMR spectroscopy. NMR Biomed 1:177–183

    PubMed  CAS  Google Scholar 

  • Luyten PR, Groen JP, Vermeulen JWAH, den Hollander JA (1989b) Experimental approaches to image localized human 31P NMR spectroscopy. Magn Reson Med 11:1–21

    PubMed  CAS  Google Scholar 

  • Madden A, Leach MO, Collins DJ, Payne GS (1991) The water resonance as an alternative pH reference: relevance to in vivo 31P NMR localized spectroscopy studies. Magn Reson Med 19:416–421

    PubMed  CAS  Google Scholar 

  • Maintz D, Heindel W, Kugel H, Jaeger R, Lackner KJ (2002) Phosphorus-31 MR spectroscopy of normal adult human brain and brain tumours. NMR Biomed 15:18–27

    PubMed  CAS  Google Scholar 

  • Martin E, Buchli R, Ritter S, Schmid R, Largo RH, Boltshauser E, Fanconi S, Duc G, Rumpel H (1996) Diagnostic and prognostic value of cerebral 31P magnetic resonance spectroscopy in neonates with perinatal asphyxia. Pediatr Res 40:749–758

    PubMed  CAS  Google Scholar 

  • Mason GF, Chu WJ, Vaughan JT, Ponder SL, Twieg DB, Adams D, Hetherington HP (1998) Evaluation of 31P metabolite differences in human cerebral gray and white matter. Magn Reson Med 39:346–353

    PubMed  CAS  Google Scholar 

  • McKnight TR (2004) Proton magnetic resonance spectroscopic evaluation of brain tumor metabolism. Semin Oncol 31:605–617

    PubMed  CAS  Google Scholar 

  • Meng S, Qiao M, Foniok T, Tuor UI (2005) White matter damage precedes that in gray matter despite similar magnetic resonance imaging changes following cerebral hypoxia-ischemia in neonatal rats. Exp Brain Res 166:56–60

    PubMed  Google Scholar 

  • Merboldt KD, Chien D, Hanicke W, Gyngell ML, Bruhn H, Frahm J (1990) Localized 31P NMR spectroscopy of the adult human brain in vivo using stimulated-echo (STEAM) sequences. J Magn Reson 89:343–361

    CAS  Google Scholar 

  • Moon RB, Richards JH (1973) Determination of intracellular pH by 31P magnetic resonance. J Biol Chem 248:7276–7278

    PubMed  CAS  Google Scholar 

  • Mulkern RV, Greenman RL, Rybicki FJ (2003) Comments on ultrahigh field 31P ATP T2 values. Magn Reson Med 50:654–655

    PubMed  Google Scholar 

  • Murphy-Boesch J, Stoyanova R, Srinavasan R, Willard T, Vingeron D, Nelson S, Taylor JS, Brown T (1993) Proton-decoupled 31P chemical shift imaging of the human brain in normal volunteers. NMR Biomed 6:173–180

    PubMed  CAS  Google Scholar 

  • Murphy-Boesch J, Srinivasan R, Carvajal L, Brown TR (1994) Two configurations of the four-ring birdcage coil for 1H imaging and 1 decoupled 31P spectroscopy of the human head. J Magn Reson B 106:103–114

    Google Scholar 

  • Murphy EJ, Rajagopalan B, Brindle KM, Radda GK (1989) Phospholipid bilayer contribution to 31P NMR spectra in vivo. Magn Reson Med 12:282–289

    PubMed  CAS  Google Scholar 

  • Nakada T, Kwee IL, Suzuki N, Houkin K (1989) Intrauterine fetal brain NMR spectroscopy: 1H and 31P studies in rats. Magn Reson Med 12:172–180

    PubMed  CAS  Google Scholar 

  • Nakada T, Kwee IL (1993) 31P localized spectroscopy of fetal brain in utero. Magn Reson Med 29:122–124

    PubMed  CAS  Google Scholar 

  • Oberhänsli RD, Hilton-Jones D, Bore PJ, Hands LJ, Rampling RP, Radda GK (1986) Biochemical investigation of human tumors in vivo with phosphorus-31 magnetic resonance spectroscopy. Lancet 2(8497):8–11

    Google Scholar 

  • Ordidge RJ, Connelly A, Lohman JAB (1986) Image selected in-vivo spectroscopy (ISIS). A new technique for spatially-selected NMR spectroscopy. J Magn Reson 66:283–294

    CAS  Google Scholar 

  • Page RA, Cady EB, Priest AN, Bainbridge A, West DA, Thornton JS, Woodman B, Bates GP, Ordidge RJ, Davie C (2003) Localised in-vivo 31P MRS in a mouse model of Huntington’s disease. In: Proceedings of the 11th Annual Meeting International Society of Magnetuc Resonance in Medicine, Toronto, Canada, p1306

    Google Scholar 

  • Pan JW, Bebin EM, Chu WJ, Kiel S, Hetherington HP (1999) Ketosis and epilepsy: 31P spectroscopic imaging at 4.1 T. Epilepsia 40:703–708

    PubMed  CAS  Google Scholar 

  • Pearce JM, Komoroski RA (2000) Analysis of phospholipid molecular species in brain by 31P NMR spectroscopy. Magn Reson Med 44:215–223

    PubMed  CAS  Google Scholar 

  • Peeters-Scholte C, Braun K, Koster J, Kops N, Blomgren K, Buonocore G, van Buul-Offers S, Hagberg H, Nicolay K, van Bel F, Groenendaal F (2003) Effects of allopurinol and deferoxamine on reperfusion injury of the brain in newborn piglets after neonatal hypoxia-ischemia. Pediatr Res 54:516–522

    PubMed  CAS  Google Scholar 

  • Petroff OAC, Prichard JW (1985) Cerebral intracellular pH by 31P nuclear magnetic resonance spectroscopy. Neurology 35:781–788

    PubMed  CAS  Google Scholar 

  • Pettegrew JW, Kopp SJ, Dadok J, Minshew NJ, Feliksik JM, Glonek T, Cohen MM (1986) Chemical characterization of a prominent phosphomonoester resonance from mammalian brain. 31P and 1H NMR analysis at 4.7 and 14.1 Tesla. J Magn Reson 67:443–450

    CAS  Google Scholar 

  • Pettegrew JW, Withers G, Panchalingam K, Post JFM (1988) Considerations for brain pH assessment by 31P NMR. Magn Reson Imaging 6:135–142

    PubMed  CAS  Google Scholar 

  • Pettegrew JW, Klunk WE, Panchalingam K, McClure RJ, Stanley JA (1997) Magnetic resonance spectroscopy changes in Alzheimer’s disease. Ann NY Acad Sci 826:282–306

    PubMed  CAS  Google Scholar 

  • Pettegrew JW, Panchalingam K, Hamilton RL, McClure RJ (2001) Brain membrane phospholipid alterations in Alzheimer’s disease. Neurochem Res 26:771–782

    PubMed  CAS  Google Scholar 

  • Pietz J, Rupp A, Ebinger F, Mayatepek E, Boesch C, Kreis R (2003) Cerebral energy metabolism in phenylketonuria: findings by quantitative in vivo 31P MR spectroscopy. Pediatr Res 53:654–662

    PubMed  Google Scholar 

  • Portman MA, Lassen NA, Cooper TG, Sills AM, Potchen EJ (1991) Intra- and extracellular pH of the brain in vivo studied by 31P-NMR during hyper- and hypocapnia. J Appl Physiol 71:2168–2172

    PubMed  CAS  Google Scholar 

  • Potwarka JJ, Drost DJ, Williamson PC (1999) Quantifying 1H decoupled in vivo 31P brain spectra. NMR Biomed 12:8–14

    PubMed  CAS  Google Scholar 

  • Puka-Sundvall M, Gajkowska B, Cholewinski M, Blomgren K, Lazarewicz JW, Hagberg H (2000) Subcellular distribution of calcium and ultrastructural changes after cerebral hypoxia-ischemia in immature rats. Dev Brain Res 125:31–41

    CAS  Google Scholar 

  • Rabenstein DL, Nakashima TT (1979) Spin-echo Fourier transform nuclear magnetic resonance spectrocopy. Analyt Chem 51:1465A–1474A

    CAS  Google Scholar 

  • Rango M, Bonifati C, Bresolin N (2006) Parkinson’s disease and brain mitochondrial dysfunction: a functional phosphorus magnetic resonance spectroscopy study. J Cereb Blood Flow Metab 26:283–290

    PubMed  CAS  Google Scholar 

  • Remy C, Albrand JP, Benabid AL, Decorps M, Jacrot M, Riondel J, Foray MF (1987) In vivo 31P nuclear magnetic resonance studies of T1 and T2 relaxation times in rat brain and in rat brain tumors implanted to nude mice. Magn Reson Med 4:144–152

    PubMed  CAS  Google Scholar 

  • Robbins RC, Balaban RS, Swain JA (1990) Intermittent hypothermic asanguineous cerebral perfusion (cerebroplegia) protects the brain during prolonged circulatory arrest. J Thorac Cardiovasc Surg 99:878–884

    PubMed  CAS  Google Scholar 

  • Robertson NJ, Cowan FM, Cox IJ, Edwards AD (2002) Brain alkaline intracellular pH after neonatal encephalopathy. Ann Neurol 52:732–742

    PubMed  CAS  Google Scholar 

  • Roth K, Hubesch B, Meyerhoff DJ, Naruse S, Gober JR, Lawry TJ, Boska MD, Matson GB, Weiner MW (1989) Noninvasive quantitation of phosphorus metabolites in human tissue by NMR spectroscopy. J Magn Reson 81:299–311

    CAS  Google Scholar 

  • Roth K, Weiner MW (1991) Determination of cytosolic ADP and AMP concentrations and the free energy of ATP hydrolysis in human muscle and brain tissues with 31P NMR spectroscopy. Magn Reson Med 22:505–511, see erratum: 1995. Magn Reson Med 33: 282

    PubMed  CAS  Google Scholar 

  • Schuldiner S, Rozengurth E (1982) Na+/H+ antiport in Swiss 3 T3 cells: mitogenic stimulation leads to cytoplasmic alkalinization. Proc Natl Acad Sci USA 79:7778–7782

    PubMed  CAS  Google Scholar 

  • Shaka AJ, Keeler J, Freeman R (1983) Evaluation of a new broadband decoupling sequence: Waltz-16. J Magn Reson 53:313–340

    CAS  Google Scholar 

  • Shoubridge EA, Briggs RW, Radda GK (1982) 31P NMR saturation transfer measurements of the steady state rates of creatine kinase and ATP synthetase in the rat brain. FEBS Lett 140: 288–292

    CAS  Google Scholar 

  • Silveri MM, Pollack MH, Diaz CI, Nassar LE, Mendelson JH, Yurgelun-Todd DA, Renshaw PF, Kaufman MJ (2004) Cerebral phosphorus metabolite and transverse relaxation time abnormalities in heroin-dependent subjects at onset of methadone maintenance treatment. Psychiatry Res 131:217–226

    PubMed  CAS  Google Scholar 

  • Simor T, Chu WJ, Hetherington HP, Kuzniecky RI, Elgavish GA (1997) Tailored temporal lobectomy induced improvements in 4.1 T 31P NMR SI generated phosphorus metabolite indices in temporal lobe epilepsy. In: Proceedings of the 5th Annual Meeting International Society of Magnetic Resonance in Medicine, Vancouver, Canada, p 33

    Google Scholar 

  • Skou JC (1982) The (Na+ + K+)-ATPase: coupling of the reaction with ATP to the reaction with Na  +  and K+. Ann N Y Acad Sci 402:169–184

    PubMed  CAS  Google Scholar 

  • Smesny S, Rosburg T, Nenadic I, Fenk KP, Kunstmann S, Rzanny R, Volz HP, Sauer H (2007) Metabolic mapping using 2D 31P-MR spectroscopy reveals frontal and thalamic metabolic abnormalities in schizophrenia. Neuroimage 35:729–737

    PubMed  Google Scholar 

  • Stubbs M, Vanstapel F, Rodrigues LM, Griffiths JR (1988) Phosphate metabolites in rat skin. NMR Biomed 1:50–55

    PubMed  CAS  Google Scholar 

  • Thoresen M, Penrice J, Lorek A, Cady EB, Wylezinska M, Kirkbride V, Cooper CE, Brown GC, Edwards AD, Wyatt JS, Reynolds EOR (1995) Mild hypothermia after severe transient hypoxia-ischemia ameliorates delayed cerebral energy failure in the newborn piglet. Pediatr Res 37:667–670

    PubMed  CAS  Google Scholar 

  • Thornton JS, Ordidge RJ, Penrice J, Cady EB, Amess PN, Punwani S, Clemence M, Wyatt JS (1998) Temporal and anatomical variations of brain water apparent diffusion coefficient in perinatal cerebral hypoxic-ischemic injury: relationships to cerebral energy metabolism. Magn Reson Med 39:920–927

    PubMed  CAS  Google Scholar 

  • Thulborn KR, Ackerman JJH (1983) Absolute molar concentrations by NMR in inhomogeneous B1. A scheme for analysis of in vivo metabolites. J Magn Reson 55:357–371

    CAS  Google Scholar 

  • Tofts PS (1988) The noninvasive measurement of absolute metabolite concentrations in vivo using surface-coil NMR spectroscopy. J Magn Reson 80:84–95

    Google Scholar 

  • Tofts PS (1994) Standing waves in uniform water phantoms. J Magn Reson B 104:143–147

    CAS  Google Scholar 

  • Tofts P, Wray S (1985) Changes in brain phosphorus metabolites during post-natal development of the rat. J Physiol 359:417–429

    PubMed  CAS  Google Scholar 

  • Ulrich M, Wokrina T, Ende G, Lang M, Bachert P (2007) 31P-{1 H} echo-planar spectroscopic imaging of the human brain in vivo. Magn Reson Med 57:784–790

    PubMed  CAS  Google Scholar 

  • Vanhamme L, van den Boogart A, Huffel SV (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129:35–43

    PubMed  CAS  Google Scholar 

  • Van der Knaap M, Van der Grond J, Van Rijen P, Faber J, Valk J, Willemse K (1990) Age-dependent changes in localized proton and phosphorus MR spectroscopy of the brain. Radiology 176:509–515

    PubMed  Google Scholar 

  • Van Sluis R, Payne GS, Leach MO (1995) Increased NOE enhancement in 1H decoupled 31P MRS. Magn Reson Med 34:893–897

    PubMed  Google Scholar 

  • Westergren I, Nystrom B, Hamberger A, Nordborg C, Johansson BB (1994) Concentrations of amino acids in extracellular fluid after opening of the blood-brain barrier by intracarotid infusion of protamine sulfate. J Neurochem 62:159–165

    PubMed  CAS  Google Scholar 

  • Wijnen JP, Scheenen TW, Klomp DW, Heerschap A (2010) 31P magnetic resonance spectroscopy imaging with polarisation transfer of phosphomono- and phosphodiesters at 3 T in the human brain: relation with age and spatial difference. NMR Biomed 23:968–976

    PubMed  CAS  Google Scholar 

  • Williams GD, Palmer C, Roberts RL, Heitjan DF, Smith MB (1992) 31P NMR spectroscopy of perinatal hypoxic-ischemic brain damage: a model to evaluate neuroprotective drugs in immature rats. NMR Biomed 5:145–153

    PubMed  CAS  Google Scholar 

  • Williams GD, Mosher TJ, Smith MB (1993) Simultaneous determination of intracellular magnesium and pH from the three 31P NMR chemical shifts of ATP. Analyt Biochem 214:458–467

    PubMed  CAS  Google Scholar 

  • Williams GD, Smith MB (1995) Application of the accurate assessment of intracellular magnesium and pH from the 31P shifts of ATP to cerebral hypoxia-ischemia in neonatal rat. Magn Reson Med 33:853–857

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest B. Cady FInstP, BSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cady, E.B. (2012). In Vivo Cerebral 31P Magnetic Resonance Spectroscopy. In: Choi, IY., Gruetter, R. (eds) Neural Metabolism In Vivo. Advances in Neurobiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1788-0_6

Download citation

Publish with us

Policies and ethics