Skip to main content

N-Acetyl-Aspartate (NAA) Metabolism

  • Chapter
  • First Online:
Neural Metabolism In Vivo

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 4))

Abstract

N-Acetyl-Aspartate (NAA) remains a unique molecule in medicine, where although its been associated with a number of brain pathologies, primarily due to its non-invasive visibility by magnetic resonance spectroscopy, its function/s remains an enigma. NAA is synthesized from aspartate and acetyl-coenzyme A in neurons and appears to be associated with early postnatal central nervous system (CNS) development. Perhaps the clearest indications as to its function comes from the observation that NAA is transported from neurons to the cytoplasm of oligodendrocytes, where the expression of lipogenic enzymes in oligodendrocytes, including the NAA-degrading enzyme aspartoacylase (ASPA) cleaves the acetate moiety for use in fatty acid and steroid synthesis, thus forming the building blocks for myelin lipid synthesis. Mutations in the gene for ASPA result in the fatal leukodystrophy Canavan disease, for which there is currently no effective treatment. In addition to postnatal myelination, in adult brain NAA also appears to adopt other roles, including a bioenergetic role in neuronal mitochondria and ion balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott C, Bustillo J (2006) What have we learned from proton magnetic resonance spectroscopy about schizophrenia? A critical update. Curr Opin Psychiatry 19:135–139

    PubMed  Google Scholar 

  • Akimitsu T, Kurisu K, Hanaya R et al (2000) Epileptic seizures induced by N-acetyl-L-aspartate in rats: in vivo and in vitro studies. Brain Res 861:143–150

    PubMed  CAS  Google Scholar 

  • Amstutz DR, Coons SW, Kerrigan JF, Rekate HL, Heiserman JE (2006) Hypothalamic hamartomas: Correlation of MR imaging and spectroscopic findings with tumor glial content. AJNR Am J Neuroradiol 27:794–798

    PubMed  CAS  Google Scholar 

  • Arnold DL, Shoubridge EA, Villemure JG, Feindel W (1990) Proton and phosphorus magnetic resonance spectroscopy of human astrocytomas in vivo. Preliminary observations on tumor grading. NMR Biomed 3:184–189

    PubMed  CAS  Google Scholar 

  • Arun P, Madhavarao CN, Moffett JR, Namboodiri MA (2006) Regulation of N-acetylaspartate and N-acetylaspartylglutamate biosynthesis by protein kinase activators. J Neurochem 98:2034–2042

    PubMed  CAS  Google Scholar 

  • Aydin-Ozemir Z, Terzibasioglu E, Altindag E, Sencer S, Baykan B (2010) Magnetic resonance spectroscopy findings in photosensitive idiopathic generalized epilepsy. Clin EEG Neurosci 41:42–49

    PubMed  Google Scholar 

  • Barany M, Spigos DG, Mok E, Venkatasubramanian PN, Wilbur AC, Langer BG (1987) High resolution proton magnetic resonance spectroscopy of human brain and liver. Magn Reson Imaging 5:393–398

    PubMed  CAS  Google Scholar 

  • Bartalini G, Margollicci M, Balestri P, Farnetani MA, Cioni M, Fois A (1992) Biochemical diagnosis of Canavan disease. Childs Nerv Syst 8:468–470

    PubMed  CAS  Google Scholar 

  • Baslow MH (1998) Function of the N-acetyl-L-histidine system in the vertebrate eye. Evidence in support of a role as a molecular water pump. J Mol Neurosci 10:193–208

    PubMed  CAS  Google Scholar 

  • Baslow MH (1999) Molecular water pumps and the aetiology of Canavan disease: a case of the sorcerer’s apprentice. J Inherit Metab Dis 22:99–101

    PubMed  CAS  Google Scholar 

  • Baslow MH, Resnik TR (1997) Canavan disease. Analysis of the nature of the metabolic lesions responsible for development of the observed clinical symptoms. J Mol Neurosci 9:109–125

    PubMed  CAS  Google Scholar 

  • Baslow MH, Suckow RF, Sapirstein V, Hungund BL (1999) Expression of aspartoacylase activity in cultured rat macroglial cells is limited to oligodendrocytes. J Mol Neurosci 13:47–53

    PubMed  CAS  Google Scholar 

  • Bates TE, Strangward M, Keelan J, Davey GP, Munro PM, Clark JB (1996) Inhibition of N-acetylaspartate production: implications for 1  H-MRS studies in vivo. Neuroreport 7:1397–1400

    PubMed  CAS  Google Scholar 

  • Benuck M, D’Adamo AF J (1968) Acetyl transport mechanisms. Metabolism of N-acetyl-L-aspartic acid in the non-nervous tissues of the rat. Biochim Biophys Acta 152:611–618

    PubMed  CAS  Google Scholar 

  • Bertolino A, Nawroz S, Mattay VS, Barnett AS, Duyn JH, Moonen CT, Frank JA, Tedeschi G, Weinberger DR (1996) Regionally specific pattern of neurochemical pathology in schizophrenia as assessed by multislice proton magnetic resonance spectroscopic imaging. Am J Psychiatry 153:1554–1563

    PubMed  CAS  Google Scholar 

  • Bertolino A, Breier A, Callicott JH, Adler C, Mattay VS, Shapiro M, Frank JA, Pickar D, Weinberger DR (2000) The relationship between dorsolateral prefrontal neuronal N-acetylaspartate and evoked release of striatal dopamine in schizophrenia. Neuropsychopharmacology 22:125–132

    PubMed  CAS  Google Scholar 

  • Bhakoo KK, Pearce D (2000) In vitro expression of N-acetyl aspartate by oligodendrocytes: implications for proton magnetic resonance spectroscopy signal in vivo. J Neurochem 74:254–262

    PubMed  CAS  Google Scholar 

  • Bhakoo KK, Craig TJ, Styles P (2001) Developmental and regional distribution of aspartoacylase in rat brain tissue. J Neurochem 79:211–220

    PubMed  CAS  Google Scholar 

  • Birken DL, Oldendorf WH (1989) N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1  H-NMR spectroscopic studies of brain. Neurosci Biobehav Rev 13:23–31

    PubMed  CAS  Google Scholar 

  • Birnbaum SM (1955) Amino acid acylases I and II from Hog Kidney. Methods Enzymol 2:115–119

    Google Scholar 

  • Birnbaum SM, Levintow L, Kingsley RB, Greenstein JP (1952) Specificity of amino acid acylases. J Biol Chem 194:455–470

    PubMed  CAS  Google Scholar 

  • Bluml S (1999) In vivo quantitation of cerebral metabolite concentrations using natural abundance 13  C-MRS at 1.5 T. J Magn Reson 136:219–225

    PubMed  CAS  Google Scholar 

  • Boltshauser E, Schmitt B, Wevers RA, Engelke U, Burlina AB, Burlina AP (2004) Follow-up of a child with hypoacetylaspartia. Neuropediatrics 35:255–258

    PubMed  CAS  Google Scholar 

  • Bothwell JH, Rae C, Dixon RM, Styles P, Bhakoo KK (2001) Hypo-osmotic swelling-activated release of organic osmolytes in brain slices: implications for brain oedema in vivo. J Neurochem 77:1632–1640

    PubMed  CAS  Google Scholar 

  • Briellmann RS, Wellard RM, Jackson GD (2005) Seizure-associated abnormalities in epilepsy: evidence from MR imaging. Epilepsia 46:760–766

    PubMed  Google Scholar 

  • Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hanicke W, Sauter R (1989a) Cerebral metabolism in man after acute stroke: new observations using localized proton NMR spectroscopy. Magn Reson Med 9:126–131

    PubMed  CAS  Google Scholar 

  • Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hanicke W, Sauter R, Hamburger C (1989b) Noninvasive differentiation of tumors with use of localized 1  H-MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology 172:541–548

    PubMed  CAS  Google Scholar 

  • Burlina AP, Schmitt B, Engelke U, Wevers RA, Burlina AB, Boltshauser E (2006) Hypoacetylaspartia: clinical and biochemical follow-up of a patient. Adv Exp Med Biol 576:283–287, discussion 361–283

    PubMed  CAS  Google Scholar 

  • Burri R, Steffen C, Herschkowitz N (1991) N-acetyl-L-Aspartate is a major source of acetyl groups for lipid synthesis during rat brain development. Dev Neurosci 13:403–411

    PubMed  CAS  Google Scholar 

  • Callicott JH, Bertolino A, Egan MF, Mattay VS, Langheim FJ, Weinberger DR (2000a) Selective relationship between prefrontal N-acetylaspartate measures and negative symptoms in schizophrenia. Am J Psychiatry 157:1646–1651

    PubMed  CAS  Google Scholar 

  • Callicott JH, Bertolino A, Mattay VS, Langheim FJ, Duyn J, Coppola R, Goldberg TE, Weinberger DR (2000b) Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex 10:1078–1092

    PubMed  CAS  Google Scholar 

  • Canavan MM (1931) Schildler’s encephalitis periaxialsis diffusa. Arch Neurol Psychiatry 25:299–308

    Google Scholar 

  • Cangro CB, Namboodiri MA, Sklar LA, Corigliano Murphy A, Neale JH (1987) Immunohistochemistry and biosynthesis of N-acetylaspartylglutamate in spinal sensory ganglia. J Neurochem 49:1579–1588

    PubMed  CAS  Google Scholar 

  • Caramanos Z, Narayanan S, Arnold DL (2005) 1  H-MRS quantification of tNA and tCr in patients with multiple sclerosis: a meta-analytic review. Brain 128:2483–2506

    PubMed  Google Scholar 

  • Chernov MF, Ochiai T, Ono Y et al (2009) Role of proton magnetic resonance spectroscopy in preoperative evaluation of patients with mesial temporal lobe epilepsy. J Neurol Sci 285:212–219

    PubMed  Google Scholar 

  • Choi IY, Gruetter R (2004) Dynamic or inert metabolism? Turnover of N-acetyl aspartate and glutathione from D-[1-13  C]glucose in the rat brain in vivo. J Neurochem 91:778–787

    PubMed  CAS  Google Scholar 

  • Chuang MT, Lin WC, Tsai HY, Liu GC, Hu SW, Chiang IC (2005) 3-T proton magnetic resonance spectroscopy of central neurocytoma: 3 case reports and review of the literature. J Comput Assist Tomogr 29:683–688

    PubMed  Google Scholar 

  • Clark JB (1998) N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci 20:271–276

    PubMed  CAS  Google Scholar 

  • Clarke DD, Greenfield S, Dicker E, Tirri LJ, Ronan EJ (1975) A relationship of N-acetylaspartate biosynthesis to neuronal protein synthesis. J Neurochem 24:479–485

    PubMed  CAS  Google Scholar 

  • Cooper JR, Roth RH, Bloom FE (1991) The biochemical basis of neuropharmacology. Oxford University Press, New York; Oxford

    Google Scholar 

  • Coyle JT (1997) The nagging question of the function of N-acetylaspartylglutamate. Neurobiol Dis 4:231–238

    PubMed  CAS  Google Scholar 

  • D’Adamo AFJ, Yatsu FM (1966) Acetate metabolism in the nervous system. N-acetyl-L-aspartic acid and the biosynthesis of brain lipids. J Neurochem 13:961–965

    PubMed  Google Scholar 

  • D’Adamo AFJ, Smith JC, Woiler C (1973) The occurrence of N-acetylaspartate amidohydrolase (aminoacylase II) in the developing rat. J Neurochem 20:1275–1278

    PubMed  Google Scholar 

  • Davie CA, Hawkins CP, Barker GJ, Brennan A, Tofts PS, Miller DH, McDonald WI (1994) Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117:49–58

    PubMed  Google Scholar 

  • De Stefano N, Matthews PM, Arnold DL (1995) Reversible decreases in N-acetylaspartate after acute brain injury. Magn Reson Med 34:721–727

    PubMed  Google Scholar 

  • De Stefano N, Matthews PM, Narayanan S, Francis GS, Antel JP, Arnold DL (1997) Axonal dysfunction and disability in a relapse of multiple sclerosis: longitudinal study of a patient. Neurology 49:1138–1141

    PubMed  Google Scholar 

  • De Stefano N, Matthews PM, Fu L, Narayanan S, Stanley J, Francis GS, Antel JP, Arnold DL (1998) Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121:1469–1477

    PubMed  Google Scholar 

  • Deicken RF, Johnson C, Pegues M (2000) Proton magnetic resonance spectroscopy of the human brain in schizophrenia. Rev Neurosci 11:147–158

    PubMed  CAS  Google Scholar 

  • Deicken RF, Eliaz Y, Feiwell R, Schuff N (2001) Increased thalamic N-acetylaspartate in male patients with familial bipolar I disorder. Psychiatry Res 106:35–45

    PubMed  CAS  Google Scholar 

  • Demougeot C, Bertrand N, Prigent-Tessier A, Garnier P, Mossiat C, Giroud M, Marie C, Beley A (2003) Reversible loss of N-acetyl-aspartate in rats subjected to long-term focal cerebral ischemia. J Cereb Blood Flow Metab 23:482–489

    PubMed  CAS  Google Scholar 

  • Fan TW, Higashi RM, Lane AN, Jardetzky O (1986) Combined use of 1  H-NMR and GC-MS for metabolite monitoring and in vivo 1  H-NMR assignments. Biochim Biophys Acta 882:154–167

    PubMed  CAS  Google Scholar 

  • Florian CL, Williams SR, Bhakoo KK, Noble MD (1996) Regional and developmental variations in metabolite concentration in the rat brain and eye: a study using 1  H-NMR spectroscopy and high performance liquid chromatography. Neurochem Res 21:1065–1074

    PubMed  CAS  Google Scholar 

  • Fu L, Matthews PM, De Stefano N, Worsley KJ, Narayanan S, Francis GS, Antel JP, Wolfson C, Arnold DL (1998) Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain 121:103–113

    PubMed  Google Scholar 

  • Fuhrman S, Palkovits M, Cassidy M, Neale JH (1994) The regional distribution of N-acetylaspartylglutamate (NAAG) and peptidase activity against NAAG in the rat nervous system. J Neurochem 62:275–281

    PubMed  CAS  Google Scholar 

  • Fulham MJ, Bizzi A, Dietz MJ et al (1992) Mapping of brain-tumor metabolites with proton MR spectroscopic imaging - clinical relevance. Radiology 185:675–686

    PubMed  CAS  Google Scholar 

  • Gasparovic C, Arfai N, Smid N, Feeney DM (2001) Decrease and recovery of N-acetylaspartate/creatine in rat brain remote from focal injury. J Neurotrauma 18:241–246

    PubMed  CAS  Google Scholar 

  • Gehl LM, Saab OH, Bzdega T, Wroblewska B, Neale JH (2004) Biosynthesis of NAAG by an enzyme-mediated process in rat central nervous system neurons and glia. J Neurochem 90:989–997

    PubMed  CAS  Google Scholar 

  • Gideon P, Henriksen O, Sperling B, Christiansen P, Olsen TS, Jorgensen HS, Arliensoborg P (1992) Early time course of N-acetylaspartate, creatine and phosphocreatine, and compounds containing choline in the brain after acute stroke - a proton magnetic-resonance spectroscopy study. Stroke 23:1566–1572

    PubMed  CAS  Google Scholar 

  • Gideon P, Sperling B, Arlien-Soborg P, Olsen TS, Henriksen O (1994) Long-term follow-up of cerebral infarction patients with proton magnetic resonance spectroscopy. Stroke 25:967–973

    PubMed  CAS  Google Scholar 

  • Godbolt AK, Waldman AD, MacManus DG, Schott JM, Frost C, Cipolotti L, Fox NC, Rossor MN (2006) MRS shows abnormalities before symptoms in familial Alzheimer disease. Neurology 66:718–722

    PubMed  CAS  Google Scholar 

  • Goldstein FB (1959) Biosynthesis of N-acetyl-L-aspartic acid. Biochim Biophys Acta 33:583–584

    PubMed  CAS  Google Scholar 

  • Gotoh M, Davies SE, Obrenovitch TP (1997) Brain tissue acidosis: effects on the extracellular concentration of N-acetylaspartate. J Neurochem 69:655–661

    PubMed  CAS  Google Scholar 

  • Grodd W, Krageloh Mann I, Petersen D, Trefz FK, Harzer K (1990) In vivo assessment of N-acetylaspartate in brain in spongy degeneration (Canavan’s disease) by proton spectroscopy [letter]. Lancet 336:437–438

    PubMed  CAS  Google Scholar 

  • Hagenfeldt L, Bollgren I, Venizelos N (1987) N-acetylaspartic aciduria due to aspartoacylase deficiency - a new aetiology of childhood leukodystrophy. J Inherit Metab Dis 10:135–141

    PubMed  CAS  Google Scholar 

  • Hugg JW, Laxer KD, Matson GB, Maudsley AA, Weiner MW (1993) Neuron loss localizes human temporal-lobe epilepsy by in-vivo proton magnetic-resonance spectroscopic imaging. Ann Neurol 34:788–794

    PubMed  CAS  Google Scholar 

  • Jagannathan NR, Tandon N, Raghunathan P, Kochupillai N (1998) Reversal of abnormalities of myelination by thyroxine therapy in congenital hypothyroidism: localized in vivo proton magnetic resonance spectroscopy (MRS) study. Brain Res Dev Brain Res 109:179–186

    PubMed  CAS  Google Scholar 

  • Jayasundar R, Shah T, Vaishya S, Singh VP, Sarkar C (2003) In vivo and in vitro MR spectroscopic profile of central neurocytomas. J Magn Reson Imaging 17:256–260

    PubMed  Google Scholar 

  • Jung RE, Haier RJ, Yeo RA, Rowland LM, Petropoulos H, Levine AS, Sibbitt WL, Brooks WM (2005) Sex differences in N-acetylaspartate correlates of general intelligence: an 1  H-MRS study of normal human brain. Neuroimage 26:965–972

    PubMed  Google Scholar 

  • Kaul R, Casanova J, Johnson AB, Tang P, Matalon R (1991a) Purification, characterization, and localization of aspartoacylase from bovine brain. J Neurochem 56:129–135

    PubMed  CAS  Google Scholar 

  • Kaul R, Michals K, Casanova J, Matalon R (1991b) The role of N-acetylaspartic acid in brain metabolism and the pathogenesis in Canavan disease. Int Pediatr 6:40–43

    Google Scholar 

  • Kaul R, Gao GP, Aloya M, Michals K, Matalon R (1993a) Identification Of Mutations In Human Aspartoacylase (Hasp) Gene In Canavan Disease. Am J Human Genet 53:215–215

    Google Scholar 

  • Kaul R, Gao GP, Balamurugan K, Matalon R (1993b) Cloning of the human aspartoacylase cDNA and a common missense mutation in Canavan disease. Nat Genet 5:118–123

    PubMed  CAS  Google Scholar 

  • Kaul R, Balamurugan K, Gao GP, Matalon R (1994a) Canavan disease: genomic organization and localization of human ASPA to 17p13-ter and conservation of the ASPA gene during evolution. Genomics 21:364–370

    PubMed  CAS  Google Scholar 

  • Kaul R, Gao GP, Aloya M, Balamurugan K, Petrosky A, Michals K, Matalon R (1994b) Canavan disease: mutations among Jewish and non-jewish patients. Am J Hum Genet 55:34–41

    PubMed  CAS  Google Scholar 

  • Kaul R, Gao GP, Matalon R, Aloya M, Su Q, Jin M, Johnson AB, Schutgens RB, Clarke JT (1996) Identification and expression of eight novel mutations among non-Jewish patients with Canavan disease. Am J Hum Genet 59:95–102

    PubMed  CAS  Google Scholar 

  • Kirmani BF, Jacobowitz DM, Kallarakal AT, Namboodiri MA (2002) Aspartoacylase is restricted primarily to myelin synthesizing cells in the CNS: therapeutic implications for Canavan disease. Brain Res Mol Brain Res 107:176–182

    PubMed  CAS  Google Scholar 

  • Kirmani BF, Jacobowitz DM, Namboodiri MA (2003) Developmental increase of aspartoacylase in oligodendrocytes parallels CNS myelination. Brain Res Dev Brain Res 140:105–115

    PubMed  CAS  Google Scholar 

  • Kitada K, Akimitsu T, Shigematsu Y, Kondo A, Maihara T, Yokoi N, Kuramoto T, Sasa M, Serikawa T (2000) Accumulation of N-acetyl-L-aspartate in the brain of the tremor rat, a mutant exhibiting absence-like seizure and spongiform degeneration in the central nervous system. J Neurochem 74:2512–2519

    PubMed  CAS  Google Scholar 

  • Klar AA, Ballmaier M, Leopold K, Hake I, Schaefer M, Bruhl R, Schubert F, Gallinat J (2010) Interaction of hippocampal volume and N-acetylaspartate concentration deficits in schizophrenia: A combined MRI and 1H-MRS study. Neuroimage 53:51–57

    PubMed  Google Scholar 

  • Klugmann M, Symes CW, Klaussner BK, Leichtlein CB, Serikawa T, Young D, During MJ (2003) Identification and distribution of aspartoacylase in the postnatal rat brain. Neuroreport 14:1837–1840

    PubMed  CAS  Google Scholar 

  • Koller KJ, Zaczek R, Coyle JT (1984) N-acetyl-aspartyl-glutamate: regional levels in rat brain and the effects of brain lesions as determined by a new HPLC method. J Neurochem 43:1136–1142

    PubMed  CAS  Google Scholar 

  • Kvittingen EA, Guldal G, Borsting S, Skalpe IO, Stokke O, Jellum E (1986) N-acetylaspartic aciduria in a child with a progressive cerebral atrophy. Clin Chim Acta 158:217–227

    PubMed  CAS  Google Scholar 

  • Lee SK, Kim J, Kim HD, Lee JS, Lee YM (2010) Initial experiences with proton MR spectroscopy in treatment monitoring of mitochondrial encephalopathy. Yonsei Med J 51:672–675

    PubMed  CAS  Google Scholar 

  • Leone P, Janson CG, Bilaniuk L et al (2000) Aspartoacylase gene transfer to the mammalian central nervous system with therapeutic implications for Canavan disease. Ann Neurol 48:27–38

    PubMed  CAS  Google Scholar 

  • Li LM, Cendes F, Antel SB, Andermann F, Serles W, Dubeau F, Olivier A, Arnold DL (2000) Prognostic value of proton magnetic resonance spectroscopic imaging for surgical outcome in patients with intractable temporal lobe epilepsy and bilateral hippocampal atrophy. Ann Neurol 47:195–200

    PubMed  CAS  Google Scholar 

  • Lin AP, Shic F, Enriquez C, Ross BD (2003) Reduced glutamate neurotransmission in patients with Alzheimer’s disease - an in vivo 13  C-magnetic resonance spectroscopy study. Magma 16:29–42

    PubMed  CAS  Google Scholar 

  • Lu ZH, Chakraborty G, Ledeen RW, Yahya D, Wu G (2004) N-Acetylaspartate synthase is bimodally expressed in microsomes and mitochondria of brain. Brain Res Mol Brain Res 122:71–78

    PubMed  CAS  Google Scholar 

  • Lucchinetti CF, Brueck W, Rodriguez M, Lassmann H (1998) Multiple sclerosis: lessons from neuropathology. Semin Neurol 18:337–349

    PubMed  CAS  Google Scholar 

  • Luyten PR, den Hollander JA (1986) Observation of metabolites in the human brain by MR spectroscopy. Radiology 161:795–798

    PubMed  CAS  Google Scholar 

  • Madhavarao CN, Hammer JA, Quarles RH, Namboodiri MA (2002) A radiometric assay for aspartoacylase activity in cultured oligodendrocytes. Anal Biochem 308:314–319

    PubMed  CAS  Google Scholar 

  • Madhavarao CN, Chinopoulos C, Chandrasekaran K, Namboodiri MA (2003) Characterization of the N-acetylaspartate biosynthetic enzyme from rat brain. J Neurochem 86:824–835

    PubMed  CAS  Google Scholar 

  • Marenco S, Bertolino A, Weinberger DR (2006) In vivo NMR measures of NAA and the neurobiology of schizophrenia. Adv Exp Med Biol 576:227–240, discussion 361–223

    PubMed  CAS  Google Scholar 

  • Matalon R, Michals-Matalon K (1998) Molecular basis of Canavan disease. Eur J Paediatr Neurol 2:69–76

    PubMed  CAS  Google Scholar 

  • Matalon R, Michals K, Sebesta D, Deanching M, Gashkoff P, Casanova J (1988) Aspartoacylase deficiency and N-acetylaspartic aciduria in patients with Canavan disease. Am J Med Genet 29:463–471

    PubMed  CAS  Google Scholar 

  • Matalon R, Kaul R, Casanova J, Michals K, Johnson A, Rapin I, Gashkoff P, Deanching M (1989) Aspartoacylase deficiency: The enzyme defect in Canavan disease. J Inherit Metab Dis 12:329–331

    PubMed  Google Scholar 

  • Mathiesen HK, Jonsson A, Tscherning T, Hanson LG, Andresen J, Blinkenberg M, Paulson OB, Sorensen PS (2006) Correlation of global N-acetyl aspartate with cognitive impairment in multiple sclerosis. Arch Neurol 63:533–536

    PubMed  Google Scholar 

  • Matthews PM, Pioro E, Narayanan S, De Stefano N, Fu L, Francis G, Antel J, Wolfson C, Arnold DL (1996) Assessment of lesion pathology in multiple sclerosis using quantitative MRI morphometry and magnetic resonance spectroscopy. Brain 119:715–722

    PubMed  Google Scholar 

  • Maudsley AA, Domenig C, Ramsay RE, Bowen BC (2010) Application of volumetric MR spectroscopic imaging for localization of neocortical epilepsy. Epilepsy Res 88:127–138

    PubMed  Google Scholar 

  • McIlwain H, Bachelard HS (1985) Biochemistry and the central nervous system. Churchill Livingstone, Edinburgh

    Google Scholar 

  • McMorris FA, McKinnon RD (1996) Regulation of oligodendrocyte development and CNS myelination by growth factors: prospects for therapy of demyelinating disease. Brain Pathol 6:313–329

    PubMed  CAS  Google Scholar 

  • Moats RA, Ernst T, Shonk TK, Ross BD (1994) Abnormal cerebral metabolite concentrations in patients with probable Alzheimer disease. Magn Reson Med 32:110–115

    PubMed  CAS  Google Scholar 

  • Moffett JR, Namboodiri MA, Cangro CB, Neale JH (1991) Immunohistochemical localization of N-acetylaspartate in rat brain. Neuroreport 2:131–134

    PubMed  CAS  Google Scholar 

  • Moffett JR, Tieman SB, Weinberger DR, Coyle JT, Namboodiri MA. 2006. N-Acetylaspartate-A unique neuronal molecule in the central nervous system. In: Advances in experimental medicine and biology, vol. 576. Springer, New York

    Google Scholar 

  • Moghaddam B (2003) Bringing order to the glutamate chaos in schizophrenia. Neuron 40:881–884

    PubMed  CAS  Google Scholar 

  • Moghaddam B, Jackson ME (2003) Glutamatergic animal models of schizophrenia. Ann N Y Acad Sci 1003:131–137

    PubMed  CAS  Google Scholar 

  • Moreno A, Ross BD, Bluml S (2001) Direct determination of the N-acetyl-L-aspartate synthesis rate in the human brain by 13  C-MRS and [1-13  C]glucose infusion. J Neurochem 77:347–350

    PubMed  CAS  Google Scholar 

  • Munoz Maniega S, Cvoro V, Chappell FM, Armitage PA, Marshall I, Bastin ME, Wardlaw JM (2008) Changes in NAA and lactate following ischemic stroke: a serial MR spectroscopic imaging study. Neurology 71:1993–1999

    PubMed  CAS  Google Scholar 

  • Nadler JV, Cooper JR (1972) N-Acetyl-L-aspartic acid content of human neural tumours and bovine periperal nervous tissues. J Neurochem 19:313–319

    PubMed  CAS  Google Scholar 

  • Namboodiri AM, Peethambaran A, Mathew R, Sambhu PA, Hershfield J, Moffett JR, Madhavarao CN (2006) Canavan disease and the role of N-acetylaspartate in myelin synthesis. Mol Cell Endocrinol 252:216–223

    PubMed  CAS  Google Scholar 

  • Narayana PA, Doyle TJ, Lai D, Wolinsky JS (1998) Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann Neurol 43:56–71

    PubMed  CAS  Google Scholar 

  • Neale JH, Bzdega T, Wroblewska B (2000) N-Acetylaspartylglutamate: the most abundant peptide neurotransmitter in the mammalian central nervous system. J Neurochem 75:443–452

    PubMed  CAS  Google Scholar 

  • Ohrmann P, Siegmund A, Suslow T, Spitzberg K, Kersting A, Arolt V, Heindel W, Pfleiderer B (2005) Evidence for glutamatergic neuronal dysfunction in the prefrontal cortex in chronic but not in first-episode patients with schizophrenia: a proton magnetic resonance spectroscopy study. Schizophr Res 73:153–157

    PubMed  Google Scholar 

  • O’Neill J, Eberling JL, Schuff N, Jagust W, Reed B, Soto G, Ezekiel F, Klein G, Weiner MW (2000) Method to correlate 1  H-MRSI and 18FDG-PET. Magn Reson Med 43:244–250

    PubMed  Google Scholar 

  • Ostojic J, Kozic D, Konstantinovic J, Covickovic-Sternic N, Mijajlovic M, Koprivsek K, Semnic R (2010) Three-dimensional multivoxel spectroscopy of the healthy hippocampus-are the metabolic differences related to the location? Clin Radiol 65:302–307

    PubMed  CAS  Google Scholar 

  • Pan JW, Takahashi K (2005) Interdependence of N-acetyl aspartate and high-energy phosphates in healthy human brain. Ann Neurol 57:92–97

    PubMed  CAS  Google Scholar 

  • Parsons MW, Li T, Barber PA, Yang Q, Darby DG, Desmond PM, Gerraty RP, Tress BM, Davis SM (2000) Combined (1)H MR spectroscopy and diffusion-weighted MRI improves the prediction of stroke outcome. Neurology 55:498–505

    PubMed  CAS  Google Scholar 

  • Patel TB, Clark JB (1979) Synthesis of N-acetyl-L-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport. Biochem J 184:539–546

    PubMed  CAS  Google Scholar 

  • Patel TB, Clark JB (1981) Mitochondrial/cytosolic carbon transfer in the developing rat brain. Biochim Biophys Acta 677:373–380

    PubMed  CAS  Google Scholar 

  • Premkumar P, Parbhakar VA, Fannon D, Lythgoe D, Williams SC, Kuipers E, Kumari V (2010) N-acetyl aspartate concentration in the anterior cingulate cortex in patients with schizophrenia: A study of clinical and neuropsychological correlates and preliminary exploration of cognitive behaviour therapy effects. Psychiatry Res Neuroimaging 182:251–260

    CAS  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682

    PubMed  CAS  Google Scholar 

  • Raine CS (1997) The Norton Lecture: a review of the oligodendrocyte in the multiple sclerosis lesion. J Neuroimmunol 77:135–152

    PubMed  CAS  Google Scholar 

  • Reid MA, Stoeckel LE, White DM, Avsar KB, Bolding MS, Akella NS, Knowlton RC, Hollander JA, Lahti AC (2010) Assessments of Function and Biochemistry of the Anterior Cingulate Cortex in Schizophrenia. Biol Psychiatry 68:625–633

    PubMed  Google Scholar 

  • Richards TL (1991) Proton MR spectroscopy in multiple-sclerosis - value in establishing diagnosis, monitoring progression, and evaluating therapy. Am J Roentgenol 157:1073–1078

    CAS  Google Scholar 

  • Riederer F, Bittsansky M, Lehner-Baumgartner E, Baumgartner C, Mlynarik V, Gruber S, Moser E, Kaya M, Serles W (2007) Decrease of NAA with aging outside the seizure focus in mesial temporal lobe epilepsy-a proton-MRS study at 3 Tesla. Brain Res 1179:131–139

    PubMed  CAS  Google Scholar 

  • Rigotti DJ, Inglese M, Gonen O (2007) Whole-brain N-acetylaspartate as a surrogate marker of neuronal damage in diffuse neurologic disorders. AJNR Am J Neuroradiol 28:1843–1849

    PubMed  CAS  Google Scholar 

  • Sager TN, Fink Jensen A, Hansen AJ (1997) Transient elevation of interstitial N-acetylaspartate in reversible global brain ischemia. J Neurochem 68:675–682

    PubMed  CAS  Google Scholar 

  • Serles W, Li LM, Antel SB, Cendes F, Gotman J, Olivier A, Andermann F, Dubeau F, Arnold DL (2001) Time course of postoperative recovery of N-acetyl-aspartate in temporal lobe epilepsy. Epilepsia 42:190–197

    PubMed  CAS  Google Scholar 

  • Simmons ML, Frondoza CG, Coyle JT (1991) Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 45:37–45

    PubMed  CAS  Google Scholar 

  • Sinichkin A, Sterri S, Edminson PD, Reichelt KL, Kvamme E (1977) In vivo labelling of acetyl-aspartyl peptides in mouse brain from intracranially and intraperitoneally administered acetyl-L-[U-14  C]aspartate. J Neurochem 29:425–431

    PubMed  CAS  Google Scholar 

  • Sistermans EA, de Coo RF, van Beerendonk HM, Poll-The BT, Kleijer WJ, van Oost BA (2000) Mutation detection in the aspartoacylase gene in 17 patients with Canavan disease: four new mutations in the non-Jewish population. Eur J Hum Genet 8:557–560

    PubMed  CAS  Google Scholar 

  • Sorensen PS, Jonsson A, Mathiesen HK, Blinkenberg M, Andresen J, Hanson LG, Ravnborg M (2006) The relationship between MRI and PET changes and cognitive disturbances in MS. J Neurol Sci 245:99–102

    PubMed  Google Scholar 

  • Sugie H, Tsurui S, Ishikawa A, Matsuda F, Sugie Y, Igarashi Y, Fujise Y (1990) Effects of neonatal hypothyroidism on brain development: analysis of brain metabolites using high resolution phosphorus and proton magnetic resonance (NMR) spectroscopy. No To Hattatsu (Japanese) 22:166–172

    CAS  Google Scholar 

  • Szulc A, Galinska B, Tarasow E et al (2007) N-acetylaspartate (NAA) levels in selected areas of the brain in patients with chronic schizophrenia treated with typical and atypical neuroleptics: a proton magnetic resonance spectroscopy (1  H-MRS) study. Med Sci Monit 13(Suppl 1):17–22

    PubMed  Google Scholar 

  • Tallan HH (1957) Studies on the distribution of N-acetyl-L-aspartic acid in brain. J Biol Chem 224:41–45

    PubMed  CAS  Google Scholar 

  • Tallan HH, Moore S, Stein WH (1956) N-acetyl-L-aspartic acid in brain. J Biol Chem 219: 257–264

    PubMed  CAS  Google Scholar 

  • Truckenmiller ME, Namboodiri MA, Brownstein MJ, Neale JH (1985) N-Acetylation of L-aspartate in the nervous system: differential distribution of a specific enzyme. J Neurochem 45:1658–1662

    PubMed  CAS  Google Scholar 

  • Tsai G, Passani LA, Slusher BS, Carter R, Baer L, Kleinman JE, Coyle JT (1995) Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Arch Gen Psychiatry 52:829–836

    PubMed  CAS  Google Scholar 

  • Tsai G, van Kammen DP, Chen S, Kelley ME, Grier A, Coyle JT (1998) Glutamatergic neurotransmission involves structural and clinical deficits of schizophrenia. Biol Psychiatry 44:667–674

    PubMed  CAS  Google Scholar 

  • Tyson RL, Gallagher C, Sutherland GR (2003) 13  C-Labeled substrates and the cerebral metabolic compartmentalization of acetate and lactate. Brain Res 992:43–52

    PubMed  CAS  Google Scholar 

  • Urazaev AK, Grossfeld RM, Fletcher PL, Speno H, Gafurov BS, Buttram JG, Lieberman EM (2001) Synthesis and release of N-acetylaspartylglutamate (NAAG) by crayfish nerve fibers: implications for axon-glia signaling. Neuroscience 106:237–247

    PubMed  CAS  Google Scholar 

  • Urenjak J, Williams SR, Gadian DG, Noble M (1992) Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro. J Neurochem 59:55–61

    PubMed  CAS  Google Scholar 

  • Urenjak J, Williams SR, Gadian DG, Noble M (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 13:981–989

    PubMed  CAS  Google Scholar 

  • Varho T, Komu M, Sonninen P, Holopainen I, Nyman S, Manner T, Sillanpaa M, Aula P, Lundbom N (1999) A new metabolite contributing to N-acetyl signal in 1  H-MRS of the brain in Salla disease. Neurology 52:1668–1672

    PubMed  CAS  Google Scholar 

  • Vermathen P, Ende G, Laxer KD, Walker JA, Knowlton RC, Barbaro NM, Matson GB, Weiner MW (2002) Temporal lobectomy for epilepsy: recovery of the contralateral hippocampus measured by 1  H-MRS. Neurology 59:633–636

    PubMed  CAS  Google Scholar 

  • Waldman AD, Rai GS, McConnell JR, Chaudry M, Grant D (2002) Clinical brain proton magnetic resonance spectroscopy for management of Alzheimer’s and sub-cortical ischemic vascular dementia in older people. Arch Gerontol Geriatr 35:137–142

    PubMed  Google Scholar 

  • Walker PM, Ben Salem D, Lalande A, Giroud M, Brunotte F (2004) Time course of NAA T2 and ADC(w) in ischaemic stroke patients: 1  H-MRS imaging and diffusion-weighted MRI. J Neurol Sci 220:23–28

    PubMed  CAS  Google Scholar 

  • Wardlaw JM, Marshall I, Wild J, Dennis MS, Cannon J, Lewis SC (1998) Studies of acute ischemic stroke with proton magnetic resonance spectroscopy: relation between time from onset, neurological deficit, metabolite abnormalities in the infarct, blood flow, and clinical outcome. Stroke 29:1618–1624

    PubMed  CAS  Google Scholar 

  • Williamson LC, Neale JH (1988) Calcium-dependent release of N-acetylaspartylglutamate from retinal neurons upon depolarization. Brain Res 475:151–155

    PubMed  CAS  Google Scholar 

  • Williamson LC, Eagles DA, Brady MJ, Moffett JR, Namboodiri MA, Neale JH (1991) Localization and Synaptic Release of N-acetylaspartylglutamate in the Chick Retina and Optic Tectum. Eur J Neurosci 3:441–451

    PubMed  Google Scholar 

  • Wolf NI, Willemsen MA, Engelke UF et al (2004) Severe hypomyelination associated with increased levels of N-acetylaspartylglutamate in CSF. Neurology 62:1503–1508

    PubMed  CAS  Google Scholar 

  • Xi ZX, Baker DA, Shen H, Carson DS, Kalivas PW (2002) Group II metabotropic glutamate receptors modulate extracellular glutamate in the nucleus accumbens. J Pharmacol Exp Ther 300:162–171

    PubMed  CAS  Google Scholar 

  • Yeo RA, Brooks WM, Jung RE (2006) NAA and higher cognitive function in humans. Adv Exp Med Biol 576:215–226, discussion 361–213

    PubMed  CAS  Google Scholar 

  • Zeng BJ, Wang ZH, Ribeiro LA et al (2002) Identification and characterization of novel mutations of the aspartoacylase gene in non-Jewish patients with Canavan disease. J Inherit Metab Dis 25:557–570

    PubMed  CAS  Google Scholar 

  • Zhao J, Ramadan E, Cappiello M, Wroblewska B, Bzdega T, Neale JH (2001) NAAG inhibits KCl-induced [(3)H]-GABA release via mGluR3, cAMP, PKA and L-type calcium conductance. Eur J Neurosci 13:340–346

    PubMed  CAS  Google Scholar 

  • Zhou L, Trapp BD, Miller RH (1998) Demyelination in the central nervous system mediated by an anti-oligodendrocyte antibody. J Neurosci Res 54:158–168

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishore K. Bhakoo Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bhakoo, K.K. (2012). N-Acetyl-Aspartate (NAA) Metabolism. In: Choi, IY., Gruetter, R. (eds) Neural Metabolism In Vivo. Advances in Neurobiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1788-0_38

Download citation

Publish with us

Policies and ethics