Skip to main content

Glutathione (GSH) Synthesis and Metabolism

  • Chapter
  • First Online:
Neural Metabolism In Vivo

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 4))

Abstract

The tripeptide glutathione (GSH) is present in brain cells in millimolar concentrations. GSH has many important cellular and extracellular functions, of which the detoxification of reactive oxygen species and of xenobiotics are especially important. In the brain, astrocytes play a central role in the GSH metabolism. Due to their broad metabolic potential astrocytes can utilize various extracellular precursors to produce the amino acids glutamate, cysteine and glycine that are required as cellular substrates for GSH synthesis. In contrast, neurons rely for their GSH synthesis on the availability of extracellular cysteine that is provided by astrocytes. The mechanism involved in this metabolic supply of cysteine includes export of GSH from astrocytes, extracellular processing of the exported GSH by ectoenzymes, and uptake into neurons of the amino acid precursors for GSH synthesis. Disturbances of this metabolic interaction between astrocytes and neurons will affect GSH homeostasis in brain and could contribute to a compromised antioxidative defense in neurological diseases. In this article we will review the current knowledge on the metabolism of GSH in brain cells with a special focus on the mechanisms that are involved in the metabolic supply of cysteine by astrocytes for the synthesis of GSH in neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RH, Sato K, Shimada S, Tohyama M, Puschel AW, Betz H (1995) Gene structure and glial expression of the glycine transporter GlyT1 in embryonic and adult rodents. J Neurosci 15:2524–2532

    PubMed  CAS  Google Scholar 

  • Akerboom T, Sies H (1990) Glutathione transport and its significance in oxidative stress. In: Vina J (ed) Glutathione: metabolism and physiological functions. CRC, Boca Raton, pp 45–55

    Google Scholar 

  • Andreazza AC, Kapczinski F, Kauer-Sant’Anna M, Walz JC, Bond DJ, Goncalves CA, Young LT, Yatham LN (2009) 3-Nitrotyrosine and glutathione antioxidant system in patients in the early and late stages of bipolar disorder. J Psychiatr Neurosci 34:263–271

    Google Scholar 

  • Aoyama K, Suh SW, Hamby AM, Liu J, Chan WY, Chen Y, Swanson RA (2006) Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci 9:119–126

    PubMed  CAS  Google Scholar 

  • Aoyama K, Watabe M, Nakaki T (2008) Regulation of neuronal glutathione synthesis. J Pharmacol Sci 108:227–238

    PubMed  CAS  Google Scholar 

  • Awasthi YC, Sharma R, Yadav S, Dwivedi S, Sharma A, Awasthi S (2007) The non-ABC drug transporter RLIP76 (RALBP-1) plays a major role in the mechanisms of drug resistance. Curr Drug Metab 8:315–323

    PubMed  CAS  Google Scholar 

  • Back SA, Gan X, Li Y, Rosenberg PA, Volpe JJ (1998) Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J Neurosci 18:6241–6253

    PubMed  CAS  Google Scholar 

  • Ballatori N, Hammond CL, Cunningham JB, Krance SM, Marchan R (2005) Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteins. Toxicol Appl Pharmacol 204:238–255

    PubMed  CAS  Google Scholar 

  • Ballatori N, Krance SM, Marchan R, Hammond CL (2009a) Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol Aspects Med 30:13–28

    PubMed  CAS  Google Scholar 

  • Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL (2009b) Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 390:191–214

    PubMed  CAS  Google Scholar 

  • Baud O, Greene AE, Li J, Wang H, Volpe JJ, Rosenberg PA (2004) Glutathione peroxidase-catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J Neurosci 24:1531–1540

    PubMed  CAS  Google Scholar 

  • Behrens MM, Sejnowski TJ (2009) Does schizophrenia arise from oxidative dysregulation of parvalbumin-interneurons in the developing cortex? Neuropharmacology 57:193–200

    PubMed  CAS  Google Scholar 

  • Bender AS, Reichelt W, Norenberg MD (2000) Characterization of cystine uptake in cultured astrocytes. Neurochem Int 37:269–276

    PubMed  CAS  Google Scholar 

  • Berger UV, Hediger MA (1999) Distribution of peptide transporter PEPT2 mRNA in the rat nervous system. Anat Embryol (Berlin) 199:439–449

    CAS  Google Scholar 

  • Betz H, Gomeza J, Armsen W, Scholze P, Eulenburg V (2006) Glycine transporters: essential regulators of synaptic transmission. Biochem Soc Trans 34:55–58

    PubMed  CAS  Google Scholar 

  • Blair IA (2006) Endogenous glutathione adducts. Curr Drug Metab 7:853–872

    PubMed  CAS  Google Scholar 

  • Bolaños JP, Heales SJR, Peuchen S, Barker JE, Land JM, Clark JB (1996) Nitric oxide-mediated mitochondrial damage: a potential neuroprotective role for glutathione. Free Radic Biol Med 21:995–1001

    PubMed  Google Scholar 

  • Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592

    PubMed  CAS  Google Scholar 

  • Botta D, White CC, Vliet-Gregg P, Mohar I, Shi S, McGrath MB, McConnachie LA, Kavanagh TJ (2008) Modulating GSH synthesis using glutamate cysteine ligase transgenic and gene-targeted mice. Drug Metab Rev 40:465–477

    PubMed  CAS  Google Scholar 

  • Burdo J, Dargusch R, Schubert D (2006) Distribution of the cystine/glutamate antiporter system x -c in brain, kidney, and duodenum. J Histochem Cytochem 54:549–557

    PubMed  CAS  Google Scholar 

  • Calabrese V, Scapagnini G, Ravagna A, Fariello RG, Guiffrida Stella AM, Abraham NG (2002) Regional distribution of heme oxygenase, HSP70, and glutathione in brain: relevance for endogenous oxidant/antioxidant balance and stress tolerance. J Neurosci Res 68:65–75

    PubMed  CAS  Google Scholar 

  • Chen Y, Vartiainen NE, Ying W, Chan PH, Koistinaho J, Swanson RA (2001) Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J Neurochem 77: 1601–1610

    PubMed  CAS  Google Scholar 

  • Chen Y, Shertzer HG, Schneider SN, Nebert DW, Dalton TP (2005) Glutamate cysteine ligase catalysis: dependence on ATP and modifier subunit for regulation of tissue glutathione levels. J Biol Chem 280:33766–33774

    PubMed  CAS  Google Scholar 

  • Chinta SJ, Kumar MJ, Hsu M, Rajagopalan S, Kaur D, Rane A, Nicholls DG, Choi J, Andersen JK (2007) Inducible alterations of glutathione levels in adult dopaminergic midbrain neurons result in nigrostriatal degeneration. J Neurosci 27:13997–14006

    PubMed  CAS  Google Scholar 

  • Circu ML, Aw TY (2008) Glutathione and apoptosis. Free Radic Res 42:689–706

    PubMed  CAS  Google Scholar 

  • Clarke DD, Sokoloff L (1999) Circulation and energy metabolism of the brain. In: Sigel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (eds) Basic neurochemistry: molecular, cellular and medical aspects. Lippincott-Raven, Philadelphia, pp 637–669

    Google Scholar 

  • Commandeur JN, Stijntjes GJ, Vermeulen NP (1995) Enzymes and transport systems involved in the formation and disposition of glutathione S-conjugates. Role in bioactivation and detoxication mechanisms of xenobiotics. Pharmacol Rev 47:271–330

    PubMed  CAS  Google Scholar 

  • Cooper AJL (1998) Role of astrocytes in maintaining cerebral glutathione homeostasis and in protecting the brain against xenobiotics and oxidative stress. In: Shaw CA (ed) Glutathione in the nervous system. Taylor & Francis, Washington, DC, pp 91–115

    Google Scholar 

  • Cooper AJ, Kristal BS (1997) Multiple roles of glutathione in the central nervous system. Biol Chem 378:793–802

    PubMed  CAS  Google Scholar 

  • Crack PJ, Taylor JM, Flentjar NJ, de Haan J, Hertzog P, Iannello RC, Kola I (2001) Increased infarct size and exacerbated apoptosis in the glutathione peroxidase-1 (Gpx-1) knockout mouse brain in response to ischemia/reperfusion injury. J Neurochem 78:1389–1399

    PubMed  CAS  Google Scholar 

  • Crack PJ, Taylor JM, Ali U, Mansell A, Hertzog PJ (2006) Potential contribution of NF-κB in neuronal cell death in the glutathione peroxidase-1 knockout mouse in response to ischemia-reperfusion injury. Stroke 37:1533–1538

    PubMed  CAS  Google Scholar 

  • Cuadrado A, Moreno-Murciano P, Pedraza-Chaverri J (2009) The transcription factor Nrf2 as a new therapeutic target in Parkinson’s disease. Expert Opin Ther Targets 13:319–329

    PubMed  CAS  Google Scholar 

  • Cubelos B, Gimenez C, Zafra F (2005) Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain. Cereb Cortex 15:448–459

    PubMed  Google Scholar 

  • Dallas S, Miller DS, Bendayan R (2006) Multidrug resistance-associated proteins: expression and function in the central nervous system. Pharmacol Rev 58:140–161

    PubMed  CAS  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A (2007) S-glutathionylation in protein redox regulation. Free Radic Biol Med 43:883–898

    PubMed  CAS  Google Scholar 

  • Dalton TP, Dieter MZ, Yang Y, Shertzer HG, Nebert DW (2000) Knockout of the mouse glutamate cysteine ligase catalytic subunit (Gclc) gene: embryonic lethal when homozygous, and proposed model for moderate glutathione deficiency when heterozygous. Biochem Biophys Res Commun 279:324–329

    PubMed  CAS  Google Scholar 

  • Dalton TP, Chen Y, Schneider SN, Nebert DW, Shertzer HG (2004) Genetically altered mice to evaluate glutathione homeostasis in health and disease. Free Radic Biol Med 37:1511–1526

    PubMed  CAS  Google Scholar 

  • Dasgupta A, Das S, Sarkar PK (2005) Thyroid hormone stimulates γ-glutamyl transpeptidase in the developing rat cerebra and in astroglial cultures. J Neurosci Res 82:851–857

    PubMed  CAS  Google Scholar 

  • Dasgupta A, Das S, Sarkar PK (2007) Thyroid hormone promotes glutathione synthesis in astrocytes by up regulation of glutamate cysteine ligase through differential stimulation of its catalytic and modulator subunit mRNAs. Free Radic Biol Med 42:617–626

    PubMed  CAS  Google Scholar 

  • de Bernardo S, Canals S, Casarejos MJ, Solano RM, Menendez J, Mena MA (2004) Role of extracellular signal-regulated protein kinase in neuronal cell death induced by glutathione depletion in neuron/glia mesencephalic cultures. J Neurochem 91:667–682

    PubMed  Google Scholar 

  • de Haan JB, Bladier C, Griffiths P, Kelner M, O’Shea RD, Cheung NS, Bronson RT, Silvestro MJ, Wild S, Zheng SS, Beart PM, Hertzog PJ, Kola I (1998) Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J Biol Chem 273:22528–22536

    PubMed  Google Scholar 

  • Dean O, Bush AI, Berk M, Copolov DL, van den Buuse M (2009) Glutathione depletion in the brain disrupts short-term spatial memory in the Y-maze in rats and mice. Behav Brain Res 198:258–262

    PubMed  CAS  Google Scholar 

  • DeCory HH, Piech-Dumas KM, Sheu SS, Federoff HJ, Anders MW (2001) Efflux of glutathione conjugate of monochlorobimane from striatal and cortical neurons. Drug Metab Dispos 29:1256–1262

    PubMed  CAS  Google Scholar 

  • Deeley RG, Cole SP (2006) Substrate recognition and transport by multidrug resistance protein 1 (ABCC1). FEBS Lett 580:1103–1111

    PubMed  CAS  Google Scholar 

  • Dhanani S, Awasthi YC (2007) Glutathione S-transferase isoenzyme composition of human tissues. In: Awasthi YC (ed) Toxicology of glutathione transferases. Taylor & Francis, Boca Raton, pp 321–338

    Google Scholar 

  • Diaz-Hernandez JI, Moncada S, Bolanos JP, Almeida A (2007) Poly(ADP-ribose) polymerase-1 protects neurons against apoptosis induced by oxidative stress. Cell Death Differ 14:1211–1221

    PubMed  CAS  Google Scholar 

  • Dieck ST, Heuer H, Ehrchen J, Otto C, Bauer K (1999) The peptide transporter PepT2 is expressed in rat brain and mediates the accumulation of the fluorescent dipeptide derivative beta-Ala-Lys-Nepsilon-AMCA in astrocytes. Glia 25:10–20

    PubMed  CAS  Google Scholar 

  • Do KQ, Cabungcal JH, Frank A, Steullet P, Cuenod M (2009) Redox dysregulation, neurodevelopment, and schizophrenia. Curr Opin Neurobiol 19:220–230

    PubMed  CAS  Google Scholar 

  • Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671

    PubMed  CAS  Google Scholar 

  • Dringen R (2005) Oxidative and antioxidative potential of brain microglial cells. Antiox Redox Signal 7:1223–1233

    CAS  Google Scholar 

  • Dringen R (2009) Neuron-glia coupling in glutathione metabolism. In: Squire L, Albright T, Bloom F, Gage F, Spitzer N (eds) The new encyclopedia of neuroscience. Elsevier, Oxford, UK, pp 733–737

    Google Scholar 

  • Dringen R, Gutterer JM (2002) Glutathione reductase from bovine brain. Methods Enzymol 348:281–288

    PubMed  CAS  Google Scholar 

  • Dringen R, Hamprecht B (1997) Involvement of glutathione peroxidase and catalase in the disposal of exogenous hydrogen peroxide by cultured astroglial cells. Brain Res 759:67–75

    PubMed  CAS  Google Scholar 

  • Dringen R, Hamprecht B (1998) Glutathione restoration as indicator for cellular metabolism of astroglial cells. Dev Neurosci 20:401–407

    PubMed  CAS  Google Scholar 

  • Dringen R, Hirrlinger J (2003) Glutathione pathways in the brain. Biol Chem 384:505–516

    PubMed  CAS  Google Scholar 

  • Dringen R, Hirrlinger J (2010) Anti-oxidative defense of brain microglial cells. In: Packer L, Sies H, Eggersdorf M, Cadenas E (eds) Micronutrients and brain health. Taylor & Francis, Boca Raton, pp 391–399

    Google Scholar 

  • Dringen R, Kranich O, Hamprecht B (1997) The γ-glutamyl transpeptidase inhibitor acivicin preserves glutathione released by astroglial cells in culture. Neurochem Res 22:727–733

    PubMed  CAS  Google Scholar 

  • Dringen R, Hamprecht B, Broer S (1998a) The peptide transporter PepT2 mediates the uptake of the glutathione precursor CysGly in astroglia-rich primary cultures. J Neurochem 71:388–393

    PubMed  CAS  Google Scholar 

  • Dringen R, Kussmaul L, Hamprecht B (1998b) Rapid clearance of tertiary butyl hydroperoxide by cultured astroglial cells via oxidation of glutathione. Glia 23:139–145

    PubMed  CAS  Google Scholar 

  • Dringen R, Kussmaul L, Gutterer JM, Hirrlinger J, Hamprecht B (1999a) The glutathione system of peroxide detoxification is less efficient in neurons than in astroglial cells. J Neurochem 72:2523–2530

    PubMed  CAS  Google Scholar 

  • Dringen R, Pfeiffer B, Hamprecht B (1999b) Synthesis of the antioxidant glutathione in neurons: Supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci 19:562–569

    PubMed  CAS  Google Scholar 

  • Dringen R, Gutterer JM, Gros C, Hirrlinger J (2001) Aminopeptidase N mediates the utilization of the GSH precursor CysGly by cultured neurons. J Neurosci Res 66:1003–1008

    PubMed  CAS  Google Scholar 

  • Dringen R, Pawlowski PG, Hirrlinger J (2005) Peroxide detoxification by brain cells. J Neurosci Res 79:157–165

    PubMed  CAS  Google Scholar 

  • Dringen R, Hoepken HH, Minich T, Ruedig C (2007) Pentose phosphate pathway and NADPH metabolism. In: Dienel G, Gibson G (eds) Handbook of neurochemistry, 3rd edn, Neural energy utilisation. Springer Verlag, Heidelberg, pp 41–62

    Google Scholar 

  • Eulenburg V, Armsen W, Betz H, Gomeza J (2005) Glycine transporters: essential regulators of neurotransmission. Trends Biochem Sci 30:325–333

    PubMed  CAS  Google Scholar 

  • Flentjar NJ, Crack PJ, Boyd R, Malin M, de Haan JB, Hertzog P, Kola I, Iannello R (2002) Mice lacking glutathione peroxidase-1 activity show increased tunel staining and an accelerated inflammatory response in brain following a cold-induced injury. Exp Neurol 177:9–20

    PubMed  CAS  Google Scholar 

  • Fonnum F, Lock EA (2004) The contributions of excitotoxicity, glutathione depletion and DNA repair in chemically induced injury to neurones: exemplified with toxic effects on cerebellar granule cells. J Neurochem 88:513–531

    PubMed  CAS  Google Scholar 

  • Forman HJ, Zhang H, Rinna A (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med 30:1–12

    PubMed  CAS  Google Scholar 

  • Frade J, Pope S, Schmidt M, Dringen R, Barbosa R, Pocock J, Laranjinha J, Heales S (2008) Glutamate induces release of glutathione from cultured rat astrocytes - a possible neuroprotective mechanism? J Neurochem 105:1144–1152

    PubMed  CAS  Google Scholar 

  • Franco R, Cidlowski JA (2009) Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 16:1303–1314

    PubMed  CAS  Google Scholar 

  • Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI (2007) The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 113:234–258

    PubMed  CAS  Google Scholar 

  • Franklin CC, Backos DS, Mohar I, White CC, Forman HJ, Kavanagh TJ (2009) Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol Aspects Med 30:86–98

    PubMed  CAS  Google Scholar 

  • Fraser JA, Saunders RD, McLellan LI (2002) Drosophila melanogaster glutamate-cysteine ligase activity is regulated by a modifier subunit with a mechanism of action similar to that of the mammalian form. J Biol Chem 277:1158–1165

    PubMed  CAS  Google Scholar 

  • Fraser JA, Kansagra P, Kotecki C, Saunders RD, McLellan LI (2003) The modifier subunit of Drosophila glutamate-cysteine ligase regulates catalytic activity by covalent and noncovalent interactions and influences glutathione homeostasis in vivo. J Biol Chem 278:46369–46377

    PubMed  CAS  Google Scholar 

  • Fujita T, Kishida T, Wada M, Okada N, Yamamoto A, Leibach FH, Ganapathy V (2004) Functional characterization of brain peptide transporter in rat cerebral cortex: identification of the high-affinity type H+/peptide transporter PEPT2. Brain Res 997:52–61

    PubMed  CAS  Google Scholar 

  • Fuller S, Steele M, Imholz P, Münch G (2010) Activated astroglia during chronic inflammation in Alzheimer’s disease - Do they neglect their neurosupportive roles? Mut Res Fundam Mol Mech Mutagen 690:40–49

    Google Scholar 

  • Garcion E, Sindji L, Leblondel G, Brachet P, Darcy F (1999) 1,25-dihydroxyvitamin D3 regulates the synthesis of γ-glutamyl transpeptidase and glutathione levels in rat primary astrocytes. J Neurochem 73:859–866

    PubMed  CAS  Google Scholar 

  • Gegg ME, Beltran B, Salas-Pino S, Bolanos JP, Clark JB, Moncada S, Heales SJ (2003) Differential effect of nitric oxide on glutathione metabolism and mitochondrial function in astrocytes and neurones: implications for neuroprotection/neurodegeneration? J Neurochem 86:228–237

    PubMed  CAS  Google Scholar 

  • Gegg ME, Clark JB, Heales SJR (2005) Co-culture of neurones with glutathione deficient astrocytes leads to increased neuronal susceptibility to nitric oxide and increased glutamate-cysteine ligase activity. Brain Res 1036:1–6

    PubMed  CAS  Google Scholar 

  • Ghezzi P, Di Simplicio P (2007) Glutathionylation pathways in drug response. Curr Opin Pharmacol 7:398–403

    PubMed  CAS  Google Scholar 

  • Giordano G, White CC, McConnachie LA, Fernandez C, Kavanagh TJ, Costa LG (2006) Neurotoxicity of domoic acid in cerebellar granule neurons in a genetic model of glutathione deficiency. Mol Pharmacol 70:2116–2126

    PubMed  CAS  Google Scholar 

  • Giordano G, White CC, Mohar I, Kavanagh TJ, Costa LG (2007) Glutathione levels modulate domoic acid induced apoptosis in mouse cerebellar granule cells. Toxicol Sci 100:433–444

    PubMed  CAS  Google Scholar 

  • Giordano G, Kavanagh TJ, Costa LG (2008a) Neurotoxicity of a polybrominated diphenyl ether mixture (DE-71) in mouse neurons and astrocytes is modulated by intracellular glutathione levels. Toxicol Appl Pharmacol 232:161–168

    PubMed  CAS  Google Scholar 

  • Giordano G, Klintworth HM, Kavanagh TJ, Costa LG (2008b) Apoptosis induced by domoic acid in mouse cerebellar granule neurons involves activation of p38 and JNK MAP kinases. Neurochem Int 52:1100–1105

    PubMed  CAS  Google Scholar 

  • Giordano G, Li L, White CC, Farin FM, Wilkerson HW, Kavanagh TJ, Costa LG (2009) Muscarinic receptors prevent oxidative stress-mediated apoptosis induced by domoic acid in mouse cerebellar granule cells. J Neurochem 109:525–538

    PubMed  CAS  Google Scholar 

  • Gomeza J, Ohno K, Betz H (2003) Glycine transporter isoforms in the mammalian central nervous system: structures, functions and therapeutic promises. Curr Opin Drug Discov Dev 6:675–682

    CAS  Google Scholar 

  • Griffin S, Clark JB, Canevari L (2005) Astrocyte-neurone communication following oxygen-glucose deprivation. J Neurochem 95:1015–1022

    PubMed  CAS  Google Scholar 

  • Griffith OW (1999) Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med 27:922–935

    PubMed  CAS  Google Scholar 

  • Griffith OW, Mulcahy RT (1999) The enzymes of glutathione synthesis: γ-glutamylcysteine synthetase. Adv Enzymol Relat Areas Mol Biol 73:209–267

    PubMed  CAS  Google Scholar 

  • Groneberg DA, Rubio-Aliaga I, Nickolaus M, Doring F, Fischer A, Daniel H (2004) Direct visualization of peptide uptake activity in the central nervous system of the rat. Neurosci Lett 364:32–36

    PubMed  CAS  Google Scholar 

  • Gysin R, Kraftsik R, Sandell J, Bovet P, Chappuis C, Conus P, Deppen P, Preisig M, Ruiz V, Steullet P, Tosic M, Werge T, Cuenod M, Do KQ (2007) Impaired glutathione synthesis in schizophrenia: convergent genetic and functional evidence. Proc Natl Acad Sci USA 104:16621–16626

    PubMed  CAS  Google Scholar 

  • Han J, Cheng FC, Yang Z, Dryhurst G (1999) Inhibitors of mitochondrial respiration, iron (II), and hydroxyl radical evoke release and extracellular hydrolysis of glutathione in rat striatum and substantia nigra: potential implications to Parkinson’s disease. J Neurochem 73:1683–1695

    PubMed  CAS  Google Scholar 

  • Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    PubMed  CAS  Google Scholar 

  • Hirrlinger J, Dringen R (2005) Multidrug resistance protein 1-mediated export of glutathione and glutathione disulfide from brain astrocytes. Methods Enzymol 400:395–400

    PubMed  CAS  Google Scholar 

  • Hirrlinger J, Dringen R (2010) The cytosolic redox state of astrocytes: maintenance, regulation and functional implications for metabolite trafficking. Brain Res Rev 63:177–188

    PubMed  CAS  Google Scholar 

  • Hirrlinger J, Gutterer JM, Kussmaul L, Hamprecht B, Dringen R (2000) Microglial cells in culture express a prominent glutathione system for the defense against reactive oxygen species. Dev Neurosci 22:384–392

    PubMed  CAS  Google Scholar 

  • Hirrlinger J, Konig J, Keppler D, Lindenau J, Schulz JB, Dringen R (2001) The multidrug resistance protein MRP1 mediates the release of glutathione disulfide from rat astrocytes during oxidative stress. J Neurochem 76:627–636

    PubMed  CAS  Google Scholar 

  • Hirrlinger J, Resch A, Gutterer JM, Dringen R (2002a) Oligodendroglial cells in culture effectively dispose of exogenous hydrogen peroxide: comparison with cultured neurones, astroglial and microglial cells. J Neurochem 82:635–644

    PubMed  CAS  Google Scholar 

  • Hirrlinger J, Schulz JB, Dringen R (2002b) Glutathione release from cultured brain cells: multidrug resistance protein 1 mediates the release of GSH from rat astroglial cells. J Neurosci Res 69:318–326

    PubMed  CAS  Google Scholar 

  • Hirrlinger J, Schulz JB, Dringen R (2002c) Effects of dopamine on the glutathione metabolism of cultured astroglial cells: implications for Parkinson’s disease. J Neurochem 82:458–467

    PubMed  CAS  Google Scholar 

  • Huang CS, Chang LS, Anderson ME, Meister A (1993) Catalytic and regulatory properties of the heavy subunit of rat kidney γ-glutamylcysteine synthetase. J Biol Chem 268:19675–19680

    PubMed  CAS  Google Scholar 

  • Ikeda Y, Taniguchi N (2005) Gene expression of γ-glutamyltranspeptidase. Methods Enzymol 401:408–425

    PubMed  CAS  Google Scholar 

  • Janáky R, Cruz-Aguado R, Oja SS, Shaw CA (2007) Glutathione in the nervous system: roles in neural function and health and implications for neurological disease. In: Oja SS, Schousboe A, Saransaari P (eds) Handbook of neurochemistry, 3rd edn, Amino acids and peptides in the nervous system. Springer Verlag, Heidelberg, pp 347–399

    Google Scholar 

  • Johnson JA, el Barbary A, Kornguth SE, Brugge JF, Siegel FL (1993) Glutathione S-transferase isoenzymes in rat brain neurons and glia. J Neurosci 13:2013–2023

    PubMed  CAS  Google Scholar 

  • Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR, Chen PC (2008) The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Ann N Y Acad Sci 1147:61–69

    PubMed  CAS  Google Scholar 

  • Jursky F, Nelson N (1995) Localization of glycine neurotransmitter transporter (GLYT2) reveals correlation with the distribution of glycine receptor. J Neurochem 64:1026–1033

    PubMed  CAS  Google Scholar 

  • Jursky F, Nelson N (1996) Developmental expression of the glycine transporters GLYT1 and GLYT2 in mouse brain. J Neurochem 67:336–344

    PubMed  CAS  Google Scholar 

  • Kang Y, Viswanath V, Jha N, Qiao X, Mo JQ, Andersen J (1999) Brain γ-glutamyl cysteine synthetase (GCS) mRNA expression patterns correlate with regional-specific enzyme activities and glutathione levels. J Neurosci Res 58:436–441

    PubMed  CAS  Google Scholar 

  • Keppler D (1999) Export pumps for glutathione S-conjugates. Free Radic Biol Med 27:985–991

    PubMed  CAS  Google Scholar 

  • Kraft AD, Johnson DA, Johnson JA (2004) Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neurosci 24:1101–1112

    PubMed  CAS  Google Scholar 

  • Kranich O, Hamprecht B, Dringen R (1996) Different preferences in the utilization of amino acids for glutathione synthesis in cultured neurons and astroglial cells derived from rat brain. Neurosci Lett 219:211–214

    PubMed  CAS  Google Scholar 

  • Kranich O, Dringen R, Sandberg M, Hamprecht B (1998) Utilization of cysteine and cysteine precursors for the synthesis of glutathione in astroglial cultures: preference for cystine. Glia 22:11–18

    PubMed  CAS  Google Scholar 

  • Kussmaul L, Hamprecht B, Dringen R (1999) The detoxification of cumene hydroperoxide by the glutathione system of cultured astroglial cells hinges on hexose availability for the regeneration of NADPH. J Neurochem 73:1246–1253

    PubMed  CAS  Google Scholar 

  • Lada MW, Kennedy RT (1997) In vivo monitoring of glutathione and cysteine in rat caudate nucleus using microdialysis on-line with capillary zone electrophoresis-laser induced fluorescence detection. J Neurosci Methods 72:153–159

    PubMed  CAS  Google Scholar 

  • Lavoie S, Chen Y, Dalton TP, Gysin R, Cuenod M, Steullet P, Do KQ (2009) Curcumin, quercetin, and tBHQ modulate glutathione levels in astrocytes and neurons: importance of the glutamate cysteine ligase modifier subunit. J Neurochem 108:1410–1422

    PubMed  CAS  Google Scholar 

  • Lee JM, Calkins MJ, Chan K, Kan YW, Johnson JA (2003) Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem 278:12029–12038

    PubMed  CAS  Google Scholar 

  • Li X, Orwar OWE, RevesjÖ C, Sandberg M (1996) γ-glutamyl peptides and related amino acds in rat hippocampus in vitro: effect of depolarisation and γ-glutamyl transpeptidase inhibition. Neurochem Int 29:121–128

    PubMed  CAS  Google Scholar 

  • Li X, Wallin C, Weber SG, Sandberg M (1999) Net efflux of cysteine, glutathione and related metabolites from rat hippocampal slices during oxygen/glucose deprivation: dependence on γ-glutamyl transpeptidase. Brain Res 815:81–88

    PubMed  CAS  Google Scholar 

  • Liddell JR, Dringen R, Crack PJ, Robinson SR (2006a) Glutathione peroxidase 1 and a high cellular glutathione concentration are essential for effective organic hydroperoxide detoxification in astrocytes. Glia 54:873–879

    PubMed  Google Scholar 

  • Liddell JR, Hoepken HH, Crack PJ, Robinson SR, Dringen R (2006b) Glutathione peroxidase 1 and glutathione are required to protect mouse astrocytes from iron-mediated hydrogen peroxide toxicity. J Neurosci Res 84:578–586

    PubMed  CAS  Google Scholar 

  • Lipton AJ, Johnson MA, Macdonald T, Lieberman MW, Gozal D, Gaston B (2001) S-nitrosothiols signal the ventilatory response to hypoxia. Nature 413:171–174

    PubMed  CAS  Google Scholar 

  • Liu H, Wang H, Shenvi S, Hagen TM, Liu RM (2004) Glutathione metabolism during aging and in Alzheimer disease. Ann N Y Acad Sci 1019:346–349

    PubMed  CAS  Google Scholar 

  • Lopez-Barea J, Barcena JA, Bocanegra JA, Martinez-Galisteo E, Peinado J (1990) Structure, mechanism, functions, and regulatory properties of glutathione reductase. In: Vina J (ed) Glutathione: metabolism and physiological functions. CRC, Boca Raton, pp 105–116

    Google Scholar 

  • Lu SC (2009) Regulation of glutathione synthesis. Mol Aspects Med 30:42–59

    PubMed  CAS  Google Scholar 

  • Maher P (2005) The effects of stress and aging on glutathione metabolism. Ageing Res Rev 4:288–314

    PubMed  CAS  Google Scholar 

  • Mannervik B, Board PG, Hayes JD, Listowsky I, Pearson WR (2005) Nomenclature for mammalian soluble glutathione transferases. Methods Enzymol 401:1–8

    PubMed  CAS  Google Scholar 

  • Margis R, Dunand C, Teixeira FK, Margis-Pinheiro M (2008) Glutathione peroxidase family - an evolutionary overview. FEBS J 275:3959–3970

    PubMed  CAS  Google Scholar 

  • Martin HL, Teismann P (2009) Glutathione – a review on its role and significance in Parkinson’s disease. FASEB J 23:3263–3272

    PubMed  CAS  Google Scholar 

  • Matsuzawa D, Obata T, Shirayama Y, Nonaka H, Kanazawa Y, Yoshitome E, Takanashi J, Matsuda T, Shimizu E, Ikehira H, Iyo M, Hashimoto K (2008) Negative correlation between brain glutathione level and negative symptoms in schizophrenia: a 3  T 1H-MRS study. PLoS One 3:e1944

    PubMed  Google Scholar 

  • McBean G (2002) Cerebral cystine uptake: a tale of two transporters. Trends Pharmacol Sci 23:299–302

    PubMed  CAS  Google Scholar 

  • Meister A (1974) Glutathione, metabolism and function via the γ-glutamyl cycle. Life Sci 15:177–190

    PubMed  CAS  Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    PubMed  CAS  Google Scholar 

  • Mieyal JJ, Gallogly MM, Qanungo S, Sabens EA, Shelton MD (2008) Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antiox Redox Signal 10:1941–1988

    CAS  Google Scholar 

  • Minich T, Riemer J, Schulz JB, Wielinga P, Wijnholds J, Dringen R (2006) The multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytes. J Neurochem 97:373–384

    PubMed  CAS  Google Scholar 

  • Misra I, Griffith OW (1998) Expression and purification of human γ-glutamylcysteine synthetase. Protein Expr Purif 13:268–276

    PubMed  CAS  Google Scholar 

  • Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291–13295

    PubMed  CAS  Google Scholar 

  • Njalsson R (2005) Glutathione synthetase deficiency. Cell Mol Life Sci 62:1938–1945

    PubMed  CAS  Google Scholar 

  • Noble F, Banisadr G, Jardinaud F, Popovici T, Lai-Kuen R, Chen H, Bischoff L, Parsadaniantz SM, Fournie-Zaluski MC, Roques BP (2001) First discrete autoradiographic distribution of aminopeptidase N in various structures of rat brain and spinal cord using the selective iodinated inhibitor [125I]RB 129. Neuroscience 105:479–488

    PubMed  CAS  Google Scholar 

  • Orwar O, Li X, Andine P, Bergstrom CM, Hagberg H, Folestad S, Sandberg M (1994) Increased intra- and extracellular concentrations of γ-glutamylglutamate and related dipeptides in the ischemic rat striatum: involvement of glutamyl transpeptidase. J Neurochem 63:1371–1376

    PubMed  CAS  Google Scholar 

  • Pallardó FV, Markovic J, García JL, Viña J (2009) Role of nuclear glutathione as a key regulator of cell proliferation. Mol Aspects Med 30:77–85

    PubMed  Google Scholar 

  • Perricone C, De Carolis C, Perricone R (2009) Glutathione: a key player in autoimmunity. Autoimmun Rev 8:697–701

    PubMed  CAS  Google Scholar 

  • Philbert MA, Beiswanger CM, Manson MM, Green JA, Novak RF, Primiano T, Reuhl KR, Lowndes HE (1995) Glutathione S-transferases and γ-glutamyl transpeptidase in the rat nervous systems: a basis for differential susceptibility to neurotoxicants. Neurotoxicology 16:349–362

    PubMed  CAS  Google Scholar 

  • Pope SA, Milton R, Heales SJ (2008) Astrocytes protect against copper-catalysed loss of extracellular glutathione. Neurochem Res 33:1410–1418

    PubMed  CAS  Google Scholar 

  • Rana S, Dringen R (2007) Gap junction hemichannel-mediated release of glutathione from cultured rat astrocytes. Neurosci Lett 415:45–48

    PubMed  CAS  Google Scholar 

  • Rathinam ML, Watts LT, Stark AA, Mahimainathan L, Stewart J, Schenker S, Henderson GI (2006) Astrocyte control of fetal cortical neuron glutathione homeostasis: up-regulation by ethanol. J Neurochem 96:1289–1300

    PubMed  CAS  Google Scholar 

  • Rebrin I, Sohal RS (2008) Pro-oxidant shift in glutathione redox state during aging. Adv Drug Deliv Rev 60:1545–1552

    PubMed  CAS  Google Scholar 

  • Rice ME, Russo-Menna I (1998) Differential compartmentalization of brain ascorbate and glutathione between neurons and glia. Neuroscience 82:1213–1233

    PubMed  CAS  Google Scholar 

  • Richman PG, Meister A (1975) Regulation of γ-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem 250:1422–1426

    PubMed  CAS  Google Scholar 

  • Ristoff E, Larsson A (2007) Inborn errors in the metabolism of glutathione. Orphanet J Rare Dis 2:16

    PubMed  Google Scholar 

  • Roux MJ, Supplisson S (2000) Neuronal and glial glycine transporters have different stoichiometries. Neuron 25:373–383

    PubMed  CAS  Google Scholar 

  • Ruedig C, Dringen R (2004) TNFα increases activity of γ-glutamyl transpeptidase in cultured rat astroglial cells. J Neurosci Res 75:536–543

    PubMed  CAS  Google Scholar 

  • Sagara J, Makino N, Bannai S (1996) Glutathione efflux from cultured astrocytes. J Neurochem 66:1876–1881

    PubMed  CAS  Google Scholar 

  • Saito Y, Nishio K, Numakawa Y, Ogawa Y, Yoshida Y, Noguchi N, Niki E (2007) Protective effects of 15-deoxy-Δ12,14-prostaglandin J2 against glutamate-induced cell death in primary cortical neuron cultures: induction of adaptive response and enhancement of cell tolerance primarily through up-regulation of cellular glutathione. J Neurochem 102:1625–1634

    PubMed  CAS  Google Scholar 

  • Salinas AE, Wong MG (1999) Glutathione S-transferases - a review. Curr Med Chem 6:279–309

    PubMed  CAS  Google Scholar 

  • Sandhu JK, Gardaneh M, Iwasiow R, Lanthier P, Gangaraju S, Ribecco-Lutkiewicz M, Tremblay R, Kiuchi K, Sikorska M (2009) Astrocyte-secreted GDNF and glutathione antioxidant system protect neurons against 6OHDA cytotoxicity. Neurobiol Dis 33:405–414

    PubMed  CAS  Google Scholar 

  • Schirmer RH, Krauth-Siegel RL, Schulz GE (1989) Glutathione reductase. In: Dolphin D, Poulson R, Avramovic O (eds) Glutathione: chemical, biochemical and medical aspects. Wiley, New York, pp 553–596

    Google Scholar 

  • Schmidt MM, Dringen R (2009) Differential effects of iodoacetamide and iodoacetate on glycolysis and glutathione metabolism of cultured astrocytes. Front Neuroenergetics 1:1–10

    PubMed  CAS  Google Scholar 

  • Schmidt MM, Dringen R (2010) Fumaric acid diesters deprive cultured primary astrocytes rapidly of glutathione. Neurochem Int 57:460–467

    PubMed  CAS  Google Scholar 

  • Shang W, Liu WH, Zhao XH, Sun QJ, Bi JZ, Chi ZF (2008) Expressions of glutathione S-transferase α, μ, and π in brains of medically intractable epileptic patients. BMC Neurosci 9:67

    PubMed  Google Scholar 

  • Shanker G, Aschner M (2001) Identification and characterisation of uptake systems for cystine and cysteine in cultured astrocytes and neurons: evidence for methylmercury-targeted disruption of astrocyte transport. J Neurosci Res 66:998–1002

    PubMed  CAS  Google Scholar 

  • Sharma R, Ansari GAS, Awasthi YC (2007) Physiological substrates of glutathione S-transferases. In: Awasthi YC (ed) Toxicology of glutathione transferases. Taylor & Francis, Boca Raton, pp 179–203

    Google Scholar 

  • Shen H, Smith DE, Keep RF, Brosius FC (2004) Immunolocalization of the proton-coupled oligopeptide transporter PEPT2 in developing rat brain. Mol Pharm 1:248–256

    PubMed  CAS  Google Scholar 

  • Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, Johnson JA, Murphy TH (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23:3394–3406

    PubMed  CAS  Google Scholar 

  • Shih AY, Imbeault S, Barakauskas V, Erb H, Jiang L, Li P, Murphy TH (2005) Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. J Biol Chem 280:22925–22936

    PubMed  CAS  Google Scholar 

  • Shine HD, Haber B (1981) Immunocytochemical localization of γ-glutamyl transpeptidase in the rat CNS. Brain Res 217:339–349

    PubMed  CAS  Google Scholar 

  • Singhal SS, Yadav S, Roth C, Singhal J (2009) RLIP76: A novel glutathione-conjugate and multi-drug transporter. Biochem Pharmacol 77:761–769

    PubMed  CAS  Google Scholar 

  • Soltaninassab SR, Sekhar KR, Meredith MJ, Freeman ML (2000) Multi-faceted regulation of γ-glutamylcysteine synthetase. J Cell Physiol 182:163–170

    PubMed  CAS  Google Scholar 

  • Srinivasan R, Ratiney H, Hammond-Rosenbluth KE, Pelletier D, Nelson S (2010) MR spectroscopic imaging of glutathione in the white and gray matter at 7 T with an application to multiple sclerosis. Magn Reson Imaging 28:163–170

    PubMed  CAS  Google Scholar 

  • Stewart VC, Stone R, Gegg ME, Sharpe MA, Hurst RD, Clark JB, Heales SJ (2002) Preservation of extracellular glutathione by an astrocyte derived factor with properties comparable to extracellular superoxide dismutase. J Neurochem 83:984–991

    PubMed  CAS  Google Scholar 

  • Stridh MH, Tranberg M, Weber SG, Blomstrand F, Sandberg M (2008) Stimulated efflux of amino acids and glutathione from cultured hippocampal slices by omission of extracellular calcium: likely involvement of connexin hemichannels. J Biol Chem 283:10347–10356

    PubMed  CAS  Google Scholar 

  • Sun X, Erb H, Murphy TH (2005) Coordinate regulation of glutathione metabolism in astrocytes by Nrf2. Biochem Biophys Res Commun 326:371–377

    PubMed  CAS  Google Scholar 

  • Supplisson S, Roux MJ (2002) Why glycine transporters have different stoichiometries. FEBS Lett 529:93–101

    PubMed  CAS  Google Scholar 

  • Taylor JM, Ali U, Iannello RC, Hertzog P, Crack PJ (2005) Diminished Akt phosphorylation in neurons lacking glutathione peroxidase-1 (Gpx1) leads to increased susceptibility to oxidative stress-induced cell death. J Neurochem 92:283–293

    PubMed  CAS  Google Scholar 

  • Toppo S, Flohé L, Ursini F, Vanin S, Maiorino M (2009) Catalytic mechanisms and specificities of glutathione peroxidases: Variations of a basic scheme. Biochim Biophys Acta 1790:1486–1500

    PubMed  CAS  Google Scholar 

  • Toyoda Y, Hagiya Y, Adachi T, Hoshijima K, Kuo MT, Ishikawa T (2008) MRP class of human ATP binding cassette (ABC) transporters: historical background and new research directions. Xenobiotica 38:833–862

    PubMed  CAS  Google Scholar 

  • Ursini F, Maiorino M, Brigelius-Flohe R, Aumann KD, Roveri A, Schomburg D, Flohe L (1995) Diversity of glutathione peroxidases. Methods Enzymol 252:38–53

    PubMed  CAS  Google Scholar 

  • Vargas MR, Johnson JA (2009) The Nrf2-ARE cytoprotective pathway in astrocytes. Expert Rev Mol Med 11:e17

    PubMed  Google Scholar 

  • Vargas MR, Pehar M, Cassina P, Beckman JS, Barbeito L (2006) Increased glutathione biosynthesis by Nrf2 activation in astrocytes prevents p75NTR-dependent motor neuron apoptosis. J Neurochem 97:687–696

    PubMed  CAS  Google Scholar 

  • Vargas MR, Johnson DA, Sirkis DW, Messing A, Johnson JA (2008) Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci 28:13574–13581

    PubMed  CAS  Google Scholar 

  • Waak J, Dringen R (2006) Formation and rapid export of the monochlorobimane–glutathione conjugate in cultured rat astrocytes. Neurochem Res 31:1409–1416

    PubMed  CAS  Google Scholar 

  • Watabe M, Aoyama K, Nakaki T (2008) A dominant role of GTRAP3-18 in neuronal glutathione synthesis. J Neurosci 28:9404–9413

    PubMed  CAS  Google Scholar 

  • Watts LT, Rathinam ML, Schenker S, Henderson GI (2005) Astrocytes protect neurons from ethanol-induced oxidative stress and apoptotic death. J Neurosci Res 80:655–666

    PubMed  CAS  Google Scholar 

  • Woehrling EK, Hill EJ, Coleman MD (2007) Development of a neurotoxicity test-system, using human post-mitotic, astrocytic and neuronal cell lines in co-culture. Toxicol in Vitro 21: 1241–1246

    PubMed  CAS  Google Scholar 

  • Wong CH, Bozinovski S, Hertzog PJ, Hickey MJ, Crack PJ (2008) Absence of glutathione peroxidase-1 exacerbates cerebral ischemia-reperfusion injury by reducing post-ischemic microvascular perfusion. J Neurochem 107:241–252

    PubMed  CAS  Google Scholar 

  • Wood SJ, Yucel M, Pantelis C, Berk M (2009) Neurobiology of schizophrenia spectrum disorders: the role of oxidative stress. Ann Acad Med Singapore 38:396–396

    PubMed  Google Scholar 

  • Xiang J, Chiang PP, Hu Y, Smith DE, Keep RF (2006) Role of PEPT2 in glycylsarcosine transport in astrocyte and glioma cultures. Neurosci Lett 396:225–229

    PubMed  CAS  Google Scholar 

  • Yang CS, Chou ST, Lin NN, Liu L, Tsai PJ, Kuo JS, Lai JS (1994) Determination of extracellular glutathione in rat brain by microdialysis and high-performance liquid chromatography with fluorescence detection. J Chromatogr B Biomed Appl 661:231–235

    PubMed  CAS  Google Scholar 

  • Yang Y, Dieter MZ, Chen Y, Shertzer HG, Nebert DW, Dalton TP (2002) Initial characterization of the glutamate-cysteine ligase modifier subunit Gclm(-/-) knockout mouse. Novel model system for a severely compromised oxidative stress response. J Biol Chem 277:49446–49452

    PubMed  CAS  Google Scholar 

  • Yonezawa M, Back SA, Gan X, Rosenberg PA, Volpe JJ (1996) Cystine deprivation induces oligodendroglial death: rescue by free radical scavengers and by a diffusible glial factor. J Neurochem 67:566–573

    PubMed  CAS  Google Scholar 

  • Zafra F, Gomeza J, Olivares L, Aragon C, Gimenez C (1995) Regional distribution and developmental variation of the glycine transporters GLYT1 and GLYT2 in the rat CNS. Eur J Neurosci 7:1342–1352

    PubMed  CAS  Google Scholar 

  • Zeevalk GD, Razmpour R, Bernard LP (2008) Glutathione and Parkinson’s disease: Is this the elephant in the room? Biomed Pharmacother 62:236–249

    PubMed  CAS  Google Scholar 

  • Zhang HF, Ong WY, Leong SK, Laperche Y (1997) Species differences in the localisation of γ-glutamyl transpeptidase immunopositive cells at the blood-brain interface. J Hirnforsch 38:323–330

    PubMed  CAS  Google Scholar 

  • Zhang J, Hu J, Ding J-H, Yao H-H, Hu G (2005) 6-Hydroxydopamine-induced glutathione alteration occurs via glutathione enzyme system in primary cultured astrocytes. Acta Pharmacol Sin 26:799–805

    PubMed  CAS  Google Scholar 

  • Zhou SF, Wang LL, Di YM, Xue CC, Duan W, Li CG, Li Y (2008) Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Med Chem 15:1981–2039

    PubMed  CAS  Google Scholar 

  • Zimniak P (2007) Substrates and reaction mechanisms of glutathione transferases. In: Awasthi YC (ed) Toxicology of glutathione transferases. Taylor & Francis, Boca Raton, pp 71–101

    Google Scholar 

  • Zimniak P, Singh SP (2007) Families of glutathione transferases. In: Awasthi YC (ed) Toxicology of glutathione transferases. Taylor & Francis, Boca Raton, pp 11–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Dringen Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schmidt, M.M., Dringen, R. (2012). Glutathione (GSH) Synthesis and Metabolism. In: Choi, IY., Gruetter, R. (eds) Neural Metabolism In Vivo. Advances in Neurobiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1788-0_36

Download citation

Publish with us

Policies and ethics