Skip to main content

Glutamate-Glutamine Cycle and Anaplerosis

  • Chapter
  • First Online:
Neural Metabolism In Vivo

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 4))

Abstract

Most excitatory neuronal activity in the brain is sustained by cycling the most prominent neurotransmitter, glutamate, and its metabolic product glutamine between neurons and astrocytes. Losses of these compounds during cycling are replenished by anaplerosis that primarily takes place in astrocytes. This chapter summarizes the methodological considerations in carbon tracer studies used to measure glutamate-glutamine cycling and anaplerosis, together with the estimated rates for these metabolic fluxes in the living brain. Questions regarding neuronal anaplerosis and the stoichiometry of the glutamate-glutamine cycle are examined. The possibility of a functional link between anaplerosis and the glutamate-glutamine cycle is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Attwell D, Gibb A (2005) Neuroenergetics and the kinetic design of excitatory synapses. Nat Rev Neurosci 6:841–849

    PubMed  CAS  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    PubMed  CAS  Google Scholar 

  • Aureli T, Di Cocco ME, Calvani M, Conti F (1997) The entry of [1-13C]glucose into biochemical pathways reveals a complex compartmentation and metabolite trafficking between glia and neurons: a study by 13C-NMR spectroscopy. Brain Res 765:218–227

    PubMed  CAS  Google Scholar 

  • Badar-Goffer RS, Ben-Yoseph O, Bachelard HS, Morris PG (1992) Neuronal-glial metabolism under depolarizing conditions. A 13C-n.m.r. study. Biochem J 282(Pt 1):225–230

    PubMed  CAS  Google Scholar 

  • Beckmann N, Turkalj I, Seelig J, Keller U (1991) 13C NMR for the assessment of human brain glucose metabolism in vivo. Biochemistry 30:6362–6366

    PubMed  CAS  Google Scholar 

  • Behar KL, Petroff OA, Prichard JW, Alger JR, Shulman RG (1986) Detection of metabolites in rabbit brain by 13C NMR spectroscopy following administration of [1-13C]glucose. Magn Reson Med 3:911–920

    PubMed  CAS  Google Scholar 

  • Bergles DE, Diamond JS, Jahr CE (1999) Clearance of glutamate inside the synapse and beyond. Curr Opin Neurobiol 9:293–298

    PubMed  CAS  Google Scholar 

  • Berl S, Lajtha A, Waelsch H (1961) Amino acid and protein metabolism – VI. Cerebral compartments of glutamic acid metabolism. J Neurochem 7:186–197

    CAS  Google Scholar 

  • Berl S, Takagaki G, Clarke DD, Waelsch H (1962) Carbon dioxide fixation in the brain. J Biol Chem 237:2570–2573

    PubMed  CAS  Google Scholar 

  • Boumezbeur F, Mason GF, de Graaf RA, Behar KL, Cline GW, Shulman GI, Rothman DL, Petersen KF (2010) Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy. J Cereb Blood Flow Metab 30:211–221

    PubMed  CAS  Google Scholar 

  • Bouzier AK, Thiaudiere E, Biran M, Rouland R, Canioni P, Merle M (2000) The metabolism of [3-13C]lactate in the rat brain is specific of a pyruvate carboxylase-deprived compartment. J Neurochem 75:480–486

    PubMed  CAS  Google Scholar 

  • Broer S, Brookes N (2001) Transfer of glutamine between astrocytes and neurons. J Neurochem 77:705–719

    PubMed  CAS  Google Scholar 

  • Brookes N (2000) Functional integration of the transport of ammonium, glutamate and glutamine in astrocytes. Neurochem Int 37:121–129

    PubMed  CAS  Google Scholar 

  • Brookes N, Turner RJ (1993) Extracellular potassium regulates the glutamine content of astrocytes: mediation by intracellular pH. Neurosci Lett 160:73–76

    PubMed  CAS  Google Scholar 

  • Brookes N, Turner RJ (1994) K+-induced alkalinization in mouse cerebral astrocytes mediated by reversal of electrogenic Na+-HCO 3 cotransport. Am J Physiol 267:C1633–C1640

    PubMed  CAS  Google Scholar 

  • Brunengraber H, Roe CR (2006) Anaplerotic molecules: current and future. J Inherit Metab Dis 29:327–331

    PubMed  Google Scholar 

  • Cerdán S, Künnecke B, Seelig J (1990) Cerebral metabolism of [1,2-13C2]acetate as detected by in vivo and in vitro 13C NMR. J Biol Chem 265:12916–12926

    PubMed  Google Scholar 

  • Chapa F, Cruz F, García-Martín ML, García-Espinosa MA, Cerdán S (2000) Metabolism of (1–13C) glucose and (2–13C, 2–2H3) acetate in the neuronal and glial compartments of the adult rat brain as detected by 13C, 2H NMR spectroscopy. Neurochem Int 37:217–228

    PubMed  CAS  Google Scholar 

  • Chaudhry FA, Schmitz D, Reimer RJ, Larsson P, Gray AT, Nicoll R, Kavanaugh M, Edwards RH (2002) Glutamine uptake by neurons: interaction of protons with system a transporters. J Neurosci 22:62–72

    PubMed  CAS  Google Scholar 

  • Cheng SC (1971) CO2 fixation in the nervous tissue. Int Rev Neurobiol 14:125–157

    PubMed  CAS  Google Scholar 

  • Cheng SC, Mela P (1966) CO2 fixation in the nervous system – II. Environmental effects on CO2 fixation in lobster nerve. J Neurochem 13:281–287

    CAS  Google Scholar 

  • Cheng SC, Nakamura R (1972) Metabolism related to the tricarboxylic acid cycle in rat brain slices. Observations on CO2 fixation and metabolic compartmentation. Brain Res 38:355–370

    PubMed  CAS  Google Scholar 

  • Cheng SC, Waelsch H (1962) Carbon dioxide fixation in lobster nerve. Science 136:782–783

    PubMed  CAS  Google Scholar 

  • Cheng SC, Waelsch H (1963) Some quantitative aspects of the fixation of carbon dioxide by the Lobster nerve. Biochem Z 338:643–653

    PubMed  CAS  Google Scholar 

  • Cheng SC, Nakamura R, Waelsch H (1967) Relative contribution of carbon dioxide fixation and acetyl-coA pathways in two nervous tissues. Nature 216:928–929

    PubMed  CAS  Google Scholar 

  • Choi IY, Lei H, Gruetter R (2002) Effect of deep pentobarbital anesthesia on neurotransmitter metabolism in vivo: on the correlation of total glucose consumption with glutamatergic action. J Cereb Blood Flow Metab 22:1343–1351

    PubMed  CAS  Google Scholar 

  • Cote LJ, Cheng SC, Waelsch H (1966) CO2 fixation in the nervous system – I. CO2 fixation in the sciatic nerve of the bullfrog. J Neurochem 13:271–279

    CAS  Google Scholar 

  • Crane RK, Ball EG (1951) Relationship of C14O2 fixation to carbohydrate metabolism in retina. J Biol Chem 189:269–276

    PubMed  CAS  Google Scholar 

  • Cruz F, Cerdán S (1999) Quantitative 13C NMR studies of metabolic compartmentation in the adult mammalian brain. NMR Biomed 12:451–462

    PubMed  CAS  Google Scholar 

  • Cruz F, Scott SR, Barroso I, Santisteban P, Cerdán S (1998) Ontogeny and cellular localization of the pyruvate recycling system in rat brain. J Neurochem 70:2613–2619

    PubMed  CAS  Google Scholar 

  • Curtis DR, Phillis JW, Watkins JC (1960) The chemical excitation of spinal neurones by certain acidic amino acids. J Physiol 150:656–682

    PubMed  CAS  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    PubMed  CAS  Google Scholar 

  • Deelchand DK, Nelson C, Shestov AA, Uğurbil K, Henry PG (2009) Simultaneous measurement of neuronal and glial metabolism in rat brain in vivo using co-infusion of [1,6-13C2]glucose and [1,2-13C2]acetate. J Magn Reson 196:157–163

    PubMed  CAS  Google Scholar 

  • de Graaf RA, Brown PB, Mason GF, Rothman DL, Behar KL (2003) Detection of [1,6-13C2]-glucose metabolism in rat brain by in vivo 1H-[13C]-NMR spectroscopy. Magn Reson Med 49:37–46

    PubMed  CAS  Google Scholar 

  • de Graaf RA, Mason GF, Patel AB, Rothman DL, Behar KL (2004) Regional glucose metabolism and glutamatergic neurotransmission in rat brain in vivo. Proc Natl Acad Sci USA 101:12700–12705

    PubMed  CAS  Google Scholar 

  • Duckrow RB, Bryan RM Jr (1987) Regional cerebral glucose utilization during hyperglycemia. J Neurochem 48:989–993

    PubMed  CAS  Google Scholar 

  • Ebert D, Haller RG, Walton ME (2003) Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J Neurosci 23:5928–5935

    PubMed  CAS  Google Scholar 

  • Erecińska M, Silver IA (1990) Metabolism and role of glutamate in mammalian brain. Prog Neurobiol 35:245–296

    PubMed  Google Scholar 

  • Eriksson G, Peterson A, Iverfeldt K, Walum E (1995) Sodium-dependent glutamate uptake as an activator of oxidative metabolism in primary astrocyte cultures from newborn rat. Glia 15:152–156

    PubMed  CAS  Google Scholar 

  • Fitzpatrick SM, Hetherington HP, Behar KL, Shulman RG (1990) The flux from glucose to glutamate in the rat brain in vivo as determined by 1H-observed, 13C-edited NMR spectroscopy. J Cereb Blood Flow Metab 10:170–179

    PubMed  CAS  Google Scholar 

  • Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11

    PubMed  CAS  Google Scholar 

  • Gamberino WC, Berkich DA, Lynch CJ, Xu B, LaNoue KF (1997) Role of pyruvate carboxylase in facilitation of synthesis of glutamate and glutamine in cultured astrocytes. J Neurochem 69:2312–2325

    PubMed  CAS  Google Scholar 

  • Grill V, Gutniak M, Bjorkman O, Lindqvist M, Stone-Elander S, Seitz RJ, Blomqvist G, Reichard P, Widen L (1990) Cerebral blood flow and substrate utilization in insulin-treated diabetic subjects. Am J Physiol 258:E813–E820

    PubMed  CAS  Google Scholar 

  • Grill V, Bjorkman O, Gutniak M, Lindqvist M (1992) Brain uptake and release of amino acids in nondiabetic and insulin-dependent diabetic subjects: important role of glutamine release for nitrogen balance. Metabolism 41:28–32

    PubMed  CAS  Google Scholar 

  • Gruetter R, Novotny EJ, Boulware SD, Mason GF, Rothman DL, Shulman GI, Prichard JW, Shulman RG (1994) Localized 13C NMR spectroscopy in the human brain of amino acid labeling from D-[1-13C]glucose. J Neurochem 63:1377–1385

    PubMed  CAS  Google Scholar 

  • Gruetter R, Seaquist ER, Kim S, Ugurbil K (1998) Localized in vivo 13C-NMR of glutamate metabolism in the human brain: initial results at 4 Tesla. Dev Neurosci 20:380–388

    PubMed  CAS  Google Scholar 

  • Gruetter R, Seaquist ER, Ugurbil K (2001) A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am J Physiol Endocrinol Metab 281:E100–E112

    PubMed  CAS  Google Scholar 

  • Hakimi P, Johnson MT, Yang J, Lepage DF, Conlon RA, Kalhan SC, Reshef L, Tilghman SM, Hanson RW (2005) Phosphoenolpyruvate carboxykinase and the critical role of cataplerosis in the control of hepatic metabolism. Nutr Metab (Lond) 2:33

    Google Scholar 

  • Hassel B (2001) Pyruvate carboxylation in neurons. J Neurosci Res 66:755–762

    PubMed  CAS  Google Scholar 

  • Hassel B, Bråthe A (2000) Neuronal pyruvate carboxylation supports formation of transmitter glutamate. J Neurosci 20:1342–1347

    PubMed  CAS  Google Scholar 

  • Hassel B, Sonnewald U (1995) Glial formation of pyruvate and lactate from TCA cycle intermediates: implications for the inactivation of transmitter amino acids? J Neurochem 65:2227–2234

    PubMed  CAS  Google Scholar 

  • Henry PG, Lebon V, Vaufrey F, Brouillet E, Hantraye P, Bloch G (2002) Decreased TCA cycle rate in the rat brain after acute 3-NP treatment measured by in vivo 1H-{13C} NMR spectroscopy. J Neurochem 82:857–866

    PubMed  CAS  Google Scholar 

  • Henry PG, Öz G, Provencher S, Gruetter R (2003a) Toward dynamic isotopomer analysis in the rat brain in vivo: automatic quantitation of 13C NMR spectra using LCModel. NMR Biomed 16:400–412

    PubMed  CAS  Google Scholar 

  • Henry PG, Crawford S, Öz G, Ugurbil K, Gruetter R (2003b) Glucose and glial-neuronal metabolism in α-chloralose anesthetized rats measured by in vivo 13C NMR spectroscopy. In: Proceedings of the 11th scientific meeting of the International Society for Magnetic Resonance in Medicine, Toronto, ON, p 1967

    Google Scholar 

  • Hertz L, Dienel GA (2002) Energy metabolism in the brain. Int Rev Neurobiol 51:1–102

    PubMed  CAS  Google Scholar 

  • Kanamori K, Ross BD (1993) 15N n.m.r. measurement of the in vivo rate of glutamine synthesis and utilization at steady state in the brain of the hyperammonaemic rat. Biochem J 293(Pt 2): 461–468

    PubMed  CAS  Google Scholar 

  • Kanamori K, Ross BD, Kuo EL (1995) Dependence of in vivo glutamine synthetase activity on ammonia concentration in rat brain studied by 1H–15N heteronuclear multiple-quantum coherence-transfer NMR. Biochem J 311(Pt 2):681–688

    PubMed  CAS  Google Scholar 

  • Kaneko T, Urade Y, Watanabe Y, Mizuno N (1987) Production, characterization, and immunohistochemical application of monoclonal antibodies to glutaminase purified from rat brain. J Neurosci 7:302–309

    PubMed  CAS  Google Scholar 

  • Kaufman EE, Driscoll BF (1992) Carbon dioxide fixation in neuronal and astroglial cells in culture. J Neurochem 58:258–262

    PubMed  CAS  Google Scholar 

  • Korf J, Gramsbergen JB (2007) Timing of potential and metabolic brain energy. J Neurochem 103:1697–1708

    PubMed  CAS  Google Scholar 

  • Kornberg HL (1966) The role and control of the glyoxylate cycle in Escherichia coli. Biochem J 99:1–11

    PubMed  CAS  Google Scholar 

  • Künnecke B, Cerdán S, Seelig J (1993) Cerebral metabolism of [1,2-13C2]glucose and [U-13C4]3-hydroxybutyrate in rat brain as detected by 13C NMR spectroscopy. NMR Biomed 6:264–277

    PubMed  Google Scholar 

  • Lajtha A, Berl S, Waelsch H (1959) Amino acid and protein metabolism of the brain. IV. The metabolism of glutamic acid. J Neurochem 3:322–332

    PubMed  CAS  Google Scholar 

  • Lapidot A, Gopher A (1994) Cerebral metabolic compartmentation. Estimation of glucose flux via pyruvate carboxylase/pyruvate dehydrogenase by 13C NMR isotopomer analysis of D-[U-13C]glucose metabolites. J Biol Chem 269:27198–27208

    PubMed  CAS  Google Scholar 

  • Lebon V, Petersen KF, Cline GW, Shen J, Mason GF, Dufour S, Behar KL, Shulman GI, Rothman DL (2002) Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J Neurosci 22:1523–1531

    PubMed  CAS  Google Scholar 

  • Lennie P (2003) The cost of cortical computation. Curr Biol 13:493–497

    PubMed  CAS  Google Scholar 

  • Lieth E, LaNoue KF, Berkich DA, Xu B, Ratz M, Taylor C, Hutson SM (2001) Nitrogen shuttling between neurons and glial cells during glutamate synthesis. J Neurochem 76:1712–1723

    PubMed  CAS  Google Scholar 

  • Maciejewski PK, Rothman DL (2008) Proposed cycles for functional glutamate trafficking in synaptic neurotransmission. Neurochem Int 52:809–825

    PubMed  CAS  Google Scholar 

  • Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195:1356–1358

    PubMed  CAS  Google Scholar 

  • Mason GF, Rothman DL, Behar KL, Shulman RG (1992) NMR determination of the TCA cycle rate and alpha-ketoglutarate/glutamate exchange rate in rat brain. J Cereb Blood Flow Metab 12:434–447

    PubMed  CAS  Google Scholar 

  • Mason GF, Gruetter R, Rothman DL, Behar KL, Shulman RG, Novotny EJ (1995) Simultaneous determination of the rates of the TCA cycle, glucose utilization, alpha-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J Cereb Blood Flow Metab 15:12–25

    PubMed  CAS  Google Scholar 

  • Mason GF, Petersen KF, de Graaf RA, Shulman GI, Rothman DL (2007) Measurements of the anaplerotic rate in the human cerebral cortex using 13C magnetic resonance spectroscopy and [1-13C] and [2-13C] glucose. J Neurochem 100:73–86

    PubMed  CAS  Google Scholar 

  • McKenna MC, Sonnewald U, Huang X, Stevenson J, Zielke HR (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J Neurochem 66: 386–393

    PubMed  CAS  Google Scholar 

  • McKenna MC, Waagepetersen HS, Schousboe A, Sonnewald U (2006) Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. Biochem Pharmacol 71:399–407

    PubMed  CAS  Google Scholar 

  • Merle M, Martin M, Villégier A, Canioni P (1996) Mathematical modelling of the citric acid cycle for the analysis of glutamine isotopomers from cerebellar astrocytes incubated with [1-13C]glucose. Eur J Biochem 239:742–751

    PubMed  CAS  Google Scholar 

  • Merle M, Bouzier-Sore AK, Canioni P (2002) Time-dependence of the contribution of pyruvate carboxylase versus pyruvate dehydrogenase to rat brain glutamine labelling from [1-13C]glucose metabolism. J Neurochem 82:47–57

    PubMed  CAS  Google Scholar 

  • Moore SA (2001) Polyunsaturated fatty acid synthesis and release by brain-derived cells in vitro. J Mol Neurosci 16:195–200, discussion 215-121

    PubMed  CAS  Google Scholar 

  • Otsuki S, Geiger A, Gombos G (1963) The metabolic pattern of the brain in brain perfusion experiments in vivo. I. The quantitative significance of CO2 assimilation in the metabolism of the brain. J Neurochem 10:397–404

    PubMed  CAS  Google Scholar 

  • Owen OE, Kalhan SC, Hanson RW (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 277:30409–30412

    PubMed  CAS  Google Scholar 

  • Öz G, Berkich DA, Henry PG, Xu Y, LaNoue K, Hutson SM, Gruetter R (2004) Neuroglial metabolism in the awake rat brain: CO2 fixation increases with brain activity. J Neurosci 24: 11273–11279

    PubMed  Google Scholar 

  • Öz G, Seaquist ER, Kumar A, Criego AB, Benedict LE, Rao JP, Henry PG, Van De Moortele PF, Gruetter R (2007) Human brain glycogen content and metabolism: implications on its role in brain energy metabolism. Am J Physiol Endocrinol Metab 292:E946–E951

    PubMed  Google Scholar 

  • Patel MS (1974) The relative significance of CO2-fixing enzymes in the metabolism of rat brain. J Neurochem 22:717–724

    PubMed  CAS  Google Scholar 

  • Patel AJ, Balazs R (1970) Manifestation of metabolic compartmentation during the maturation of the rat brain. J Neurochem 17:955–971

    PubMed  CAS  Google Scholar 

  • Patel AB, de Graaf RA, Mason GF, Kanamatsu T, Rothman DL, Shulman RG, Behar KL (2004) Glutamatergic neurotransmission and neuronal glucose oxidation are coupled during intense neuronal activation. J Cereb Blood Flow Metab 24:972–985

    PubMed  CAS  Google Scholar 

  • Patel AB, Chowdhury GM, de Graaf RA, Rothman DL, Shulman RG, Behar KL (2005a) Cerebral pyruvate carboxylase flux is unaltered during bicuculline-seizures. J Neurosci Res 79:128–138

    PubMed  CAS  Google Scholar 

  • Patel AB, de Graaf RA, Mason GF, Rothman DL, Shulman RG, Behar KL (2005b) The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci USA 102:5588–5593

    PubMed  CAS  Google Scholar 

  • Patel AB, de Graaf RA, Rothman DL, Behar KL, Mason GF (2010) Evaluation of cerebral acetate transport and metabolic rates in the rat brain in vivo using 1H-[13C]-NMR. J Cereb Blood Flow Metab 30:1200–1213

    PubMed  CAS  Google Scholar 

  • Pfeuffer J, Tkáč I, Choi I-Y, Merkle H, Ugurbil K, Garwood M, Gruetter R (1999) Localized in vivo 1H NMR detection of neurotransmitter labeling in rat brain during infusion of [1-13C] D-glucose. Magn Reson Med 41:1077–1083

    PubMed  CAS  Google Scholar 

  • Pfrieger FW (2003) Cholesterol homeostasis and function in neurons of the central nervous system. Cell Mol Life Sci 60:1158–1171

    PubMed  CAS  Google Scholar 

  • Risa O, Melo TM, Sonnewald U (2008) Quantification of amounts and 13C content of metabolites in brain tissue using high- resolution magic angle spinning 13C NMR spectroscopy. NMR Biomed 22(3):266–271

    Google Scholar 

  • Rolfe DF, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77:731–758

    PubMed  CAS  Google Scholar 

  • Rossi CA, Berl S, Clarke DD, Purpura DP, Waelsch H (1962) Rate of CO2 fixation in brain and liver. Life Sci 1:533–539

    PubMed  CAS  Google Scholar 

  • Rothman DL, Behar KL, Hetherington HP, den Hollander JA, Bendall MR, Petroff OA, Shulman RG (1985) 1H-Observe/13C-decouple spectroscopic measurements of lactate and glutamate in the rat brain in vivo. Proc Natl Acad Sci USA 82:1633–1637

    PubMed  CAS  Google Scholar 

  • Sastry PS (1985) Lipids of nervous tissue: composition and metabolism. Prog Lipid Res 24:69–176

    PubMed  CAS  Google Scholar 

  • Satrustegui J, Contreras L, Ramos M, Marmol P, del Arco A, Saheki T, Pardo B (2007) Role of aralar, the mitochondrial transporter of aspartate-glutamate, in brain N-acetylaspartate formation and Ca2+ signaling in neuronal mitochondria. J Neurosci Res 85:3359–3366

    PubMed  CAS  Google Scholar 

  • Schousboe A, Sarup A, Bak LK, Waagepetersen HS, Larsson OM (2004) Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission. Neurochem Int 45:521–527

    PubMed  CAS  Google Scholar 

  • Serres S, Bezancon E, Franconi JM, Merle M (2007) Brain pyruvate recycling and peripheral metabolism: an NMR analysis ex vivo of acetate and glucose metabolism in the rat. J Neurochem 101:1428–1440

    PubMed  CAS  Google Scholar 

  • Serres S, Raffard G, Franconi JM, Merle M (2008) Close coupling between astrocytic and neuronal metabolisms to fulfill anaplerotic and energy needs in the rat brain. J Cereb Blood Flow Metab 28:712–724

    PubMed  CAS  Google Scholar 

  • Shank RP, Campbell GL (1984) Alpha-ketoglutarate and malate uptake and metabolism by synaptosomes: further evidence for an astrocyte-to-neuron metabolic shuttle. J Neurochem 42: 1153–1161

    PubMed  CAS  Google Scholar 

  • Shank RP, Bennett GS, Freytag SO, Campbell GL (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329:364–367

    PubMed  CAS  Google Scholar 

  • Shen J, Sibson NR, Cline G, Behar KL, Rothman DL, Shulman RG (1998) 15N-NMR spectroscopy studies of ammonia transport and glutamine synthesis in the hyperammonemic rat brain. Dev Neurosci 20:434–443

    PubMed  CAS  Google Scholar 

  • Shen J, Petersen KF, Behar KL, Brown P, Nixon TW, Mason GF, Petroff OA, Shulman GI, Shulman RG, Rothman DL (1999) Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc Natl Acad Sci USA 96:8235–8240

    PubMed  CAS  Google Scholar 

  • Shestov AA, Valette J, Ugurbil K, Henry PG (2007) On the reliability of 13C metabolic modeling with two-compartment neuronal-glial models. J Neurosci Res 85:3294–3303

    PubMed  CAS  Google Scholar 

  • Sibson NR, Dhankhar A, Mason GF, Behar KL, Rothman DL, Shulman RG (1997) In vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate-glutamine cycling. Proc Natl Acad Sci USA 94:2699–2704

    PubMed  CAS  Google Scholar 

  • Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci USA 95:316–321

    PubMed  CAS  Google Scholar 

  • Sibson NR, Mason GF, Shen J, Cline GW, Herskovits AZ, Wall JE, Behar KL, Rothman DL, Shulman RG (2001) In vivo 13C NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during [2-13C]glucose infusion. J Neurochem 76:975–989

    PubMed  CAS  Google Scholar 

  • Siesjoe BK, Thompson WO (1965) The uptake of inspired 14CO2 into the acid-labile, the acid-soluble, the lipid, the protein and the nucleic acid fractions of rat brain tissue. Acta Physiol Scand 64:182–192

    PubMed  CAS  Google Scholar 

  • Sonnewald U, Westergaard N, Petersen SB, Unsgard G, Schousboe A (1993) Metabolism of [U-13C]glutamate in astrocytes studied by 13C NMR spectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle. J Neurochem 61:1179–1182

    PubMed  CAS  Google Scholar 

  • Storm-Mathisen J, Danbolt NC, Rothe F, Torp R, Zhang N, Aas JE, Kanner BI, Langmoen I, Ottersen OP (1992) Ultrastructural immunocytochemical observations on the localization, metabolism and transport of glutamate in normal and ischemic brain tissue. Prog Brain Res 94:225–241

    PubMed  CAS  Google Scholar 

  • Van den Berg CJ, Krzalic L, Mela P, Waelsch H (1969) Compartmentation of glutamate metabolism in brain. Evidence for the existence of two different tricarboxylic acid cycles in brain. Biochem J 113:281–290

    PubMed  Google Scholar 

  • Van Eijsden P, Behar KL, Mason GF, Braun KP, de Graaf RA (2010) In vivo neurochemical profiling of rat brain by 1H-[13C] NMR spectroscopy: cerebral energetics and glutamatergic/GABAergic neurotransmission. J Neurochem 112:24–33

    PubMed  Google Scholar 

  • Waagepetersen HS, Qu H, Hertz L, Sonnewald U, Schousboe A (2002) Demonstration of pyruvate recycling in primary cultures of neocortical astrocytes but not in neurons. Neurochem Res 27:1431–1437

    PubMed  CAS  Google Scholar 

  • Waelsch H, Berl HW, Rossi CA, Clarke DD, Purpura DP (1964) Quantitative aspects of CO2 fixation in mammalian brain in vivo. J Neurochem 11:717–728

    PubMed  CAS  Google Scholar 

  • Waniewski RA, Martin DL (1998) Preferential utilization of acetate by astrocytes is attributable to transport. J Neurosci 18:5225–5233

    PubMed  CAS  Google Scholar 

  • Yu AC, Drejer J, Hertz L, Schousboe A (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 41:1484–1487

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH grants R01 NS38672 (PGH), R21 NS060253 (GÖ) and VA Merit award (DAO). The Center for MR Research is supported by National Center for Research Resources (NCRR) biotechnology research resource grant P41RR08079 and Neuroscience Center Core Blueprint Award P30 NS057091. The Structural Biology NMR facility at the University of Minnesota is supported with funds from the NSF (BIR-961477), the University of Minnesota Medical School, and the Minnesota Medical Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülin Öz Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Öz, G., Okar, D.A., Henry, PG. (2012). Glutamate-Glutamine Cycle and Anaplerosis. In: Choi, IY., Gruetter, R. (eds) Neural Metabolism In Vivo. Advances in Neurobiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1788-0_32

Download citation

Publish with us

Policies and ethics