Skip to main content

Redox Shuttles in the Brain

  • Chapter
  • First Online:
Neural Metabolism In Vivo

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 4))

Abstract

Herein, we summarize the most relevant systems operating in brain for the transfer of reducing equivalents from NAD+/NADH or NADP+/NADPH across the inner mitochondrial membrane. The kinetic properties, the transport characteristics and the calcium activation patterns of the carriers and enzymes involved in shuttling process are described. The involvement of redox shuttles in the physiology and the pathological states of the nervous system are also discussed. The malate-aspartate shuttle (MAS) is considered to be the major redox shuttle system transferring reducing equivalents from cytosolic NAD+/NADH to mitochondria that functions in brain, mainly important in neuronal cells. The function of MAS in brain is essential for maintaining a NAD+/NADH ratio favourable for the oxidative metabolism of glucose. MAS deficiency in mice has been shown to produce severe neurological deficits and growth retardation. These mice exhibit pronounced motor coordination defects along with an impairment in myelination in the central nervous system. The existence of Aralar/AGC1 (aralar; aspartate-glutamate carrier)-knockout mice (lacking MAS activity in brain) has revealed new functions for MAS. Particularly, aralar was found to be essential in the supply of brain aspartate and N-acetylaspartate for myelin lipid synthesis and in the transmission of small Ca2+ signals to neuronal mitochondria. Interestingly, the first human patient with aralar deficiency associated to a severe hypomyelination has been recently reported. The activity of the other major redox shuttle (glycerol-3-phosphate shuttle, GPS) in brain has been long questioned. Although indirect metabolic evidence might suggest that GPS is functional in the brain; for a long time the two enzymatic constituents of GPS (cytosolic and mitochondrial glycerol 3-phosphate dehydrogenases, cGPDH and mGPDH) were not found to colocalize in the same cell type, a fact that would be required for the GPS to be functional. Besides this, no neurological disturbances have been reported in GPS-deficient mice. Up to now, cGPDH had been exclusively found in oligodendrocytes, where it could provide glycerol phosphate for phospholipid synthesis and mGPDH had been found in neurons and astrocytes, where glycerol phosphate could be used as respiratory substrate. However, recent transcriptome studies in brain have revealed the coexistence of cGPDH and mGPDH in neurons and astrocytes, supporting the possible function of GPS in these cell types. Other alternative NADH shuttles are described, particularly the citrate shuttles, malate-oxaloacetate and lactate shuttles. The citrate shuttles provide acetyl-CoA for lipid synthesis, and the citrate-pyruvate cycle, which is supposed to operate in glial cells provides also NADPH in the cytosol. These shuttles may be required when MAS is impaired; and/or in glial cells, where MAS has lower activity than in neurons. Finally, two redox systems thought to transfer reducing equivalents from mitochondria to cytosolic NADP+/NADPH are described. These shuttles may be important for biosynthetic reactions in the cytosol and may play a critical role in the cellular defense against oxidative stress. However, the existence of these alternative shuttles has not been demonstrated by reconstitution assays, and because of this, should be regarded with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAT:

aspartate aminotransferase

Ac-CoA:

acetyl-coenzyme A

ACS:

acetyl CoA synthetase-1

ACL:

ATP-Citrate lyase

AGC:

aspartate-glutamate carrier

Asp:

aspartate

AOAA:

aminooxyacetic acid

ASPA:

aspartoacylase

Asp-NAT:

L-aspartate N-acetyltransferase

CaMCs:

calcium binding mitochondrial carriers

CaU:

calcium uniporter

CIC:

tricarboxylate carrier

CS:

citrate synthetase

DHAP:

dihydroxyacetone phosphate

DIC:

dicarboxylate carrier

GABA:

α-aminobutyric acid

GAPDH:

glyceraldehyde 3-phosphate dehydrogenase

Glt:

glutamate

G3P:

glycerol 3-phosphate

G6PDH:

glucose 6-phosphate dehydrogenase

Gln:

glutamine

GPx:

glutathione peroxidase

GR:

glutathione reductase

cGPDH:

cytosolic glycerol 3-phosphate dehydrogenase

mGPDH:

mitochondrial glycerol 3-phosphate dehydrogenase

GPS:

glycerol 3-P shuttle

c/m ICDH:

cytosolic/mitochondrial NADP+-dependent isocitrate dehydrogenase

IDH:

NAD+-dependent isocitrate dehydrogenase

α-KG:

α-ketoglutarate

LDH:

lactate dehydrogenase

Mal:

malate

MAS:

malate-aspartate shuttle

MC:

mitochondrial carrier

MCT:

monocarboxylate carrier

MDH:

malate dehydrogenase

c/m ME:

cytosolic/mitochondrial malic enzyme

NAA:

N-acetyl aspartate

3-NPA:

3-nitropropionic acid

OAA:

oxalacetate

OGC:

α-ketoglutarate/malate carrier

Oxodic:

oxodicarboxylate carrier

PC:

pyruvate carboxylase

Pyr:

pyruvate

ROS:

radical oxygen species

SNP:

single nucleotide polymorphism

TCA:

tricarboxilic acid cycle

TIM:

inner membrane translocase

TOM:

outer membrane translocase

VOCC:

voltage operated calcium channel.

References

  • Alfadda A, DosSantos RA, Stepanyan Z, Marrif H, Silva JE (2004) Mice with deletion of the mitochondrial glycerol-3-phosphate dehydrogenase gene exhibit a thrifty phenotype: effect of gender. Am J Physiol Regul Integr Comp Physiol 287(1):147–156

    Google Scholar 

  • Andrés A, Satrústegui J, Machado A (1980) Development of NADPH-producing pathways in rat heart. Biochem J 186:799–803

    PubMed  Google Scholar 

  • Atlante A, Gagliardi S, Marra E, Calissano P, Passarella S (1999) Glutamate neurotoxicity in rat cerebellar granule cells involves cytochrome c release from mitochondria and mitochondrial shuttle impairment. J Neurochem 73:237–246

    PubMed  CAS  Google Scholar 

  • Atlante A, Seccia TM, De Bari L, Marra E, Passarella S (2006) Mitochondria from the left heart ventricles of both normotensive and spontaneously hypertensive rats oxidize externally added NADH mostly via a novel malate/oxaloacetate shuttle as reconstructed in vitro. Int J Mol Med 18:177–186

    PubMed  CAS  Google Scholar 

  • Atlante A, de Bari L, Bobba A, Marra E, Passarella S (2007) Transport and metabolism of l-lactate occur in mitochondria from cerebellar granule cells and are modified in cells undergoing low potassium dependent apoptosis. Biochim Biophys Acta 1767:1285–1299

    PubMed  CAS  Google Scholar 

  • Azzi A, Chappell JB, Robinson BH (1967) Penetration of the mitochondrial membrane by glutamate and aspartate. Biochem Biophys Res Commun 29:148–152

    PubMed  CAS  Google Scholar 

  • Azzi A, Glerum M, Koller R, Mertens W, Spycher S (1993) The mitochondrial tricarboxylate carrier. J Bioenerg Biomembr 25:515–524

    PubMed  CAS  Google Scholar 

  • Bajo M, Fruehauf J, Kim SH, Fountoulakis M, Lubec G (2002) Proteomic evaluation of intermediary metabolism enzyme proteins in fetal Down’s syndrome cerebral cortex. Proteomics 2:1539–1546

    PubMed  CAS  Google Scholar 

  • Baslow MH (2003) N-acetylaspartate in the vertebrate brain: metabolism and function. Neurochem Res 28:941–953

    PubMed  CAS  Google Scholar 

  • Begum L, Jalil MA, Kobayashi K, Iijima M, Li MX, Yasuda T, Horiuchi M, del Arco A, Satrústegui J, Saheki T (2002) Expression of three mitochondrial solute carriers, citrin, aralar1 and ornithine transporter, in relation to urea cycle in mice. Biochim Biophys Acta 1574:283–292

    PubMed  CAS  Google Scholar 

  • Beigneux AP, Kosinski C, Gavino B, Horton JD, Skarnes WC, Young SG (2004) ATP-citrate lyase deficiency in the mouse. J Biol Chem 279:9557–9564

    PubMed  CAS  Google Scholar 

  • Bergersen L, Waerhaug O, Helm J, Thomas M, Laake P, Davies AJ, Wilson MC, Halestrap AP, Ottersen OP (2001) A novel postsynaptic density protein: the monocarboxylate transporter MCT2 is co-localized with delta-glutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses. Exp Brain Res 136:523–534

    PubMed  CAS  Google Scholar 

  • Berkich DA, Ola MS, Cole J, Sweatt AJ, Hutson SM, LaNoue KF (2007) Mitochondrial transport proteins of the brain. J Neurosci Res 85(15):3367–3377

    PubMed  CAS  Google Scholar 

  • Bhakoo KK, Craig TJ, Styles P (2001) Developmental and regional distribution of aspartoacylase in rat brain tissue. J Neurochem 79:211–220

    PubMed  CAS  Google Scholar 

  • Bisaccia F, De Palma A, Palmieri F (1989) Identification and purification of the tricarboxylate carrier from rat liver mitochondria. Biochim Biophys Acta 977:171–176

    PubMed  CAS  Google Scholar 

  • Bisaccia F, De Palma A, Palmieri F (1992) Identification and purification of the aspartate/glutamate carrier from bovine heart mitochondria. Biochim Biophys Acta 1106:291–296

    PubMed  CAS  Google Scholar 

  • Bittar PG, Charnay Y, Pellerin L, Bouras C, Magistretti PJ (1996) Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab 16:1079–1089

    PubMed  CAS  Google Scholar 

  • Blasi F, Bacchelli E, Carone S, Toma C, Monaco AP, Bailey AJ, Maestrini E (2006) SLC25A12 and CMYA3 gene variants are not associated with autism in the IMGSAC multiplex family sample. Eur J Hum Genet 14:123–126

    PubMed  CAS  Google Scholar 

  • Bliss TM, Ip M, Cheng E, Minami M, Pellerin L, Magistretti P, Sapolsky RM (2004) Dual-gene, dual-cell type therapy against an excitotoxic insult by bolstering neuroenergetics. J Neurosci 24:6202–6208

    PubMed  CAS  Google Scholar 

  • Brandt RB, Laux JE, Spainhour SE, Kline ES (1987) Lactate dehydrogenase in rat mitochondria. Arch Biochem Biophys 259(2):412–422

    PubMed  CAS  Google Scholar 

  • Brooks GA, Dubouchaud H, Brown M, Sicurello JP, Butz CE (1999) Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Proc Natl Acad Sci USA 96:1129–1134

    PubMed  CAS  Google Scholar 

  • Brown LJ, MacDonald MJ, Lehn DA, Moran SM (1994) Sequence of rat mitochondrial glycerol-3-phosphate dehydrogenase cDNA. Evidence for EF-hand calcium-binding domains. J Biol Chem 269:14363–14366

    PubMed  CAS  Google Scholar 

  • Brown LJ, Koza RA, Everett C, Reitman ML, Marshall L, Fahien LA, Kozak LP, MacDonald MJ (2002a) Normal thyroid thermogenesis but reduced viability and adiposity in mice lacking the mitochondrial glycerol phosphate dehydrogenase. J Biol Chem 277(36):32892–32898

    PubMed  CAS  Google Scholar 

  • Brown LJ, Koza RA, Marshall L, Kozak LP, MacDonald MJ (2002b) Lethal hypoglycemic ketosis and glyceroluria in mice lacking both the mitochondrial and the cytosolic glycerol phosphate dehydrogenases. J Biol Chem 277(36):32899–32904

    PubMed  CAS  Google Scholar 

  • Bukato G, Kochan Z, Swierczynski J (1994) Subregional and intracellular distribution of NADP-linked malic enzyme in human brain. Biochem Med Metab Biol 51:43–50

    PubMed  CAS  Google Scholar 

  • Bukato G, Kochan Z, Swierczynski J (1995a) Different regulatory properties of the cytosolic and mitochondrial forms of malic enzyme isolated from human brain. Int J Biochem Cell Biol 27:1003–1008

    PubMed  CAS  Google Scholar 

  • Bukato G, Kochan Z, Swierczynski J (1995b) Purification and properties of cytosolic and mitochondrial malic enzyme isolated from human brain. Int J Biochem Cell Biol 27:47–54

    PubMed  CAS  Google Scholar 

  • Burri R, Steffen C, Herschkowitz N (1991) N-acetyl-L-aspartate is a major source of acetyl groups for lipid synthesis during rat brain development. Dev Neurosci 13:403–411

    PubMed  CAS  Google Scholar 

  • Caesar K, Hashemi P, Douhou A, Bonvento G, Boutelle MG, Walls AB, Lauritzen M (2008) Glutamate receptor-dependent increments in lactate, glucose and oxygen metabolism evoked in rat cerebellum in vitro. J Physiol 586(5):1337–1349

    PubMed  CAS  Google Scholar 

  • Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28(1):264–278

    PubMed  CAS  Google Scholar 

  • Cater HL, Benham CD, Sundstrom LE (2001) Neuroprotective role of monocarboxylate transport during glucose deprivation in slice cultures of rat hippocampus. J Physiol 531:459–466

    PubMed  CAS  Google Scholar 

  • Cater HL, Chandratheva A, Benham CD, Morrison B, Sundstrom LE (2003) Lactate and glucose as energy during, and after, oxygen deprivation in rat hippocampal and cultured slices. J Neurochem 87(6):1381–1390

    PubMed  CAS  Google Scholar 

  • Cesar M, Hamprecht B (1995) Immunocytochemical examination of neural rat and mouse primary cultures using monoclonal antibodies raised against pyruvate carboxylase. J Neurochem 64:2312–2318

    PubMed  CAS  Google Scholar 

  • Chakraborty G, Mekala P, Yahya D, Wu G, Ledeen RW (2001) Intraneuronal N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin-associated aspartoacylase. J Neurochem 78:736–745

    PubMed  CAS  Google Scholar 

  • Cheeseman AJ, Clark JB (1988) Influence of the malate-aspartate shuttle on oxidative metabolism in synaptosomes. J Neurochem 50:1559–1565

    PubMed  CAS  Google Scholar 

  • Cheng JD, Espinosa de los Monteros A, de Vellis J (1997) Glial- and fat-specific expression of the rat glycerol phosphate dehydrogenase-luciferase fusion gene in transgenic mice. J Neurosci Res 50:300–311

    PubMed  CAS  Google Scholar 

  • Chih ChP, Lipton P, Roberts EL (2001) Do active cerebral neurons really use lactate rather than glucose? Trends in Neuroscience 24(10):573–578

    CAS  Google Scholar 

  • Chugani DC, Sundram BS, Behen M, Lee ML, Moore GJ (1999) Evidence of altered energy metabolism in autistic children. Prog Neuropsychopharmacol Biol Psychiatry 23:635–641

    PubMed  CAS  Google Scholar 

  • Contreras L, Gomez-Puertas P, Iijima M, Kobayashi K, Saheki T, Satrústegui J (2007) Ca2+ Activation kinetics of the two aspartate-glutamate mitochondrial carriers, aralar and citrin: role in the heart malate-aspartate NADH shuttle. J Biol Chem 282:7098–7106

    PubMed  CAS  Google Scholar 

  • Contreras L, Satrústegui J (2009) Calcium signaling in brain mitochondria: interplay of malate aspartate NADH shuttle and calcium uniporter/mitochondrial dehydrogenase pathways. J Biol Chem 284:7091–7099

    PubMed  CAS  Google Scholar 

  • Contreras L, Urbieta A, Kobayashi K, Saheki T, Satrústegui J (2010) Low levels of citrin (SLC25A13) expression in adult mouse brain restricted to neuronal clusters. J Neurosci Res 88 (5):1009–1016

    Google Scholar 

  • Curran SP, Leuenberger D, Oppliger W, Koehler CM (2002a) The Tim9p-Tim10p complex binds to the transmembrane domains of the ADP/ATP carrier. EMBO J 21:942–953

    PubMed  CAS  Google Scholar 

  • Curran SP, Leuenberger D, Schmidt E, Koehler CM (2002b) The role of the Tim8p-Tim13p complex in a conserved import pathway for mitochondrial polytopic inner membrane proteins. J Cell Biol 158:1017–1027

    PubMed  CAS  Google Scholar 

  • D’Adamo AF Jr, Yatsu FM (1966) Acetate metabolism in the nervous system. N-acetyl-L-aspartic acid and the biosynthesis of brain lipids. J Neurochem 13:961–965

    PubMed  Google Scholar 

  • Das K, Lewis RY, Combatsiaris TP, Lin Y, Shapiro L, Charron MJ, Scherer PE (1999) Predominant expression of the mitochondrial dicarboxylate carrier in white adipose tissue. Biochem J 344(Pt 2): 313–320

    PubMed  CAS  Google Scholar 

  • Davis AJ, Sepuri NB, Holder J, Johnson AE, Jensen RE (2000) Two intermembrane space TIM complexes interact with different domains of Tim23p during its import into mitochondria. J Cell Biol 150:1271–1282

    PubMed  CAS  Google Scholar 

  • Dawson AG (1979) Oxidation of cytosolic NADH formed during aerobic metabolism in mammalian cells. Trends Biochem Sci 4:171–176

    CAS  Google Scholar 

  • Debernardi R, Pierre K, Lengacher S, Magistretti PJ, Pellerin L (2003) Cell-specific expression pattern of monocarboxylate transporters in astrocytes and neurons observed in different mouse brain cortical cell cultures. J Neurosci Res 73:141–155

    PubMed  CAS  Google Scholar 

  • del Arco A, Satrústegu J (1998) Molecular cloning of Aralar, a new member of the mitochondrial carrier superfamily that binds calcium and is present in human muscle and brain. J Biol Chem 273:23327–23334

    PubMed  Google Scholar 

  • del Arco A, Agudo M, Satrústegui J (2000) Characterization of a second member of the subfamily of calcium-binding mitochondrial carriers expressed in human non-excitable tissues. Biochem J 345(Pt 3):725–732

    PubMed  Google Scholar 

  • del Arco A, Morcillo J, Martinez-Morales JR, Galian C, Martos V, Bovolenta P, Satrústegui J (2002) Expression of the aspartate/glutamate mitochondrial carriers aralar1 and citrin during development and in adult rat tissues. Eur J Biochem 269:3313–3320

    PubMed  Google Scholar 

  • del Arco A, Satrústegui J (2004) Identification of a novel human subfamily of mitochondrial carriers with calcium-binding domains. J Biol Chem 279:24701–24713

    PubMed  Google Scholar 

  • del Arco A (2005) Novel variants of human SCaMC-3, an isoform of the ATP-Mg/P(i) mitochondrial carrier, generated by alternative splicing from 3’-flanking transposable elements. Biochem J 389:647–655

    PubMed  Google Scholar 

  • del Arco A, Satrústegui J (2005) New mitochondrial carriers: an overview. Cell Mol Life Sci 62:2204–2227

    PubMed  Google Scholar 

  • Dierks T, Kramer R (1988) Asymmetric orientation of the reconstituted aspartate/glutamate carrier from mitochondria. Biochim Biophys Acta 937:112–126

    PubMed  CAS  Google Scholar 

  • Dierks T, Riemer E, Kramer R (1988) Reaction mechanism of the reconstituted aspartate/glutamate carrier from bovine heart mitochondria. Biochim Biophys Acta 943:231–244

    PubMed  CAS  Google Scholar 

  • Dombrowski GJ Jr, Swiatek KR, Chao KL (1989) Lactate, 3-hydroxybutyrate, and glucose as substrates for the early postnatal rat brain. Neurochem Res 14:667–675

    PubMed  CAS  Google Scholar 

  • DosSantos RA, Alfadda A, Eto K, Kadowaki T, Silva JE (2003) Evidence for a compensated thermogenic defect in transgenic mice lacking the mitochondrial glycerol-3-phosphate dehydrogenase gene. Endocrinology 144(12):5469–5479

    PubMed  CAS  Google Scholar 

  • Dringen R, Pawlowski PG, Hirrlinger J (2005) Peroxide detoxification by brain cells. J Neurosci Res 79:157–165

    PubMed  CAS  Google Scholar 

  • Elshourbagy NA, Near JC, Kmetz PJ, Sathe GM, Southan C, Strickler JE, Gross M, Young JF, Wells TN, Groot PH (1990) Rat ATP citrate-lyase. Molecular cloning and sequence analysis of a full-length cDNA and mRNA abundance as a function of diet, organ, and age. J Biol Chem 265:1430–1435

    PubMed  CAS  Google Scholar 

  • Endo T, Shioiri T, Kitamura H, Kimura T, Endo S, Masuzawa N, Someya T (2007) Altered chemical metabolites in the amygdale-hippocampus region contribute to autistic symptoms of autism spectrum disorders. Biol Psychiatry 62(9):1030–1037

    PubMed  CAS  Google Scholar 

  • Ernster L, Gottfried S (1981) Mitochondria: A historical review. J Cell Biol 91(3):227–255

    CAS  Google Scholar 

  • Farfari S, Schulz V, Corkey B, Prentki M (2000) Glucose-regulated anaplerosis and cataplerosis in pancreatic beta-cells: possible implication of a pyruvate/citrate shuttle in insulin secretion. Diabetes 49:718–726

    PubMed  CAS  Google Scholar 

  • Fiermonte G, Dolce V, Palmieri F (1998a) Expression in Escherichia coli, functional characterization, and tissue distribution of isoforms A and B of the phosphate carrier from bovine mitochondria. J Biol Chem 273:22782–22787

    PubMed  CAS  Google Scholar 

  • Fiermonte G, Palmieri L, Dolce V, Lasorsa FM, Palmieri F, Runswick MJ, Walker JE (1998b) The sequence, bacterial expression, and functional reconstitution of the rat mitochondrial dicarboxylate transporter cloned via distant homologs in yeast and Caenorhabditis elegans. J Biol Chem 273:24754–24759

    PubMed  CAS  Google Scholar 

  • Fiermonte G, Dolce V, Palmieri L, Ventura M, Runswick MJ, Palmieri F, Walker JE (2001) Identification of the human mitochondrial oxodicarboxylate carrier. Bacterial expression, reconstitution, functional characterization, tissue distribution, and chromosomal location. J Biol Chem 276:8225–8230

    PubMed  CAS  Google Scholar 

  • Filipek PA, Juranek J, Smith M, Mays LZ, Ramos ER, Bocian M, Masser-Frye D, Laulhere TM, Modahl C, Spence MA, Gargus JJ (2003) Mitochondrial dysfunction in autistic patients with 15q inverted duplication. Ann Neurol 53:801–804

    PubMed  CAS  Google Scholar 

  • Fitzpatrick SM, Cooper AJ, Duffy TE (1983) Use of beta-methylene-D, L-aspartate to assess the role of aspartate aminotransferase in cerebral oxidative metabolism. J Neurochem 41:1370–1383

    PubMed  CAS  Google Scholar 

  • Folstein SE, Rosen-Sheidley B (2001) Genetics of autism: complex aetiology for a heterogeneous disorder. Nat Rev Genet 2:943–955

    PubMed  CAS  Google Scholar 

  • Friedman SD, Shaw DW, Artru AA, Richards TL, Gardner J, Dawson G, Posse S, Dager SR (2003) Regional brain chemical alterations in young children with autism spectrum disorder. Neurology 60:100–107

    PubMed  CAS  Google Scholar 

  • Gallagher L, Becker K, Kearney G, Dunlop A, Stallings R, Green A, Fitzgerald M, Gill M (2003) Brief report: A case of autism associated with del(2)(q32.1q32.2) or (q32.2q32.3). J Autism Dev Disord 33:105–108

    PubMed  Google Scholar 

  • Glerum DM, Claeys D, Mertens W, Azzi A (1990) The tricarboxylate carrier from rat liver mitochondria. Purification, reconstitution and kinetic characterization. Eur J Biochem 194:681–684

    PubMed  CAS  Google Scholar 

  • Goldmuntz E, Wang Z, Roe BA, Budarf ML (1996) Cloning, genomic organization, and chromosomal localization of human citrate transport protein to the DiGeorge/velocardiofacial syndrome minimal critical region. Genomics 33:271–276

    PubMed  CAS  Google Scholar 

  • Goldstein FB (1969) The enzymatic synthesis of N-acetyl-L-aspartic acid by subcellular preparations of rat brain. J Biol Chem 244:4257–4260

    PubMed  CAS  Google Scholar 

  • Grabarek Z (2006) Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol 359:509–525

    PubMed  CAS  Google Scholar 

  • Gramsbergen JB, Sandberg M, Kornblit B, Zimmer J (2000) Pyruvate protects against 3-nitropropionic acid neurotoxicity in corticostriatal slice cultures. Neuroreport 11:2743–2747

    PubMed  CAS  Google Scholar 

  • Gumaa KA, McLean P, Greenbaum AL (1971) Compartmentation in relation to metabolic control in liver. Essays Biochem 7:39–86

    PubMed  CAS  Google Scholar 

  • Gunter TE, Buntinas L, Sparagna G, Eliseev R, Gunter K (2000) Mitochondrial calcium transport: mechanisms and functions. Cell Calcium 28:285–296

    PubMed  CAS  Google Scholar 

  • Halestrap AP (1975) The mitochondrial pyruvate carrier. Biochem J 148:85–96

    PubMed  CAS  Google Scholar 

  • Hashimoto T, Hussien R, Brooks GA (2006) Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. Am J Physiol Endocrinol Metab 290:E1237–E1244

    PubMed  CAS  Google Scholar 

  • Hassel B (2001) Pyruvate carboxylation in neurons. J Neurosci Res 66:755–762

    PubMed  CAS  Google Scholar 

  • Heisterkamp N, Mulder MP, Langeveld A, ten Hoeve J, Wang Z, Roe BA, Groffen J (1995) Localization of the human mitochondrial citrate transporter protein gene to chromosome 22Q11 in the DiGeorge syndrome critical region. Genomics 29:451–456

    PubMed  CAS  Google Scholar 

  • Hildyard JC, Ammala C, Dukes ID, Thomson SA, Halestrap AP (2005) Identification and characterisation of a new class of highly specific and potent inhibitors of the mitochondrial pyruvate carrier. Biochim Biophys Acta 1707:221–230

    PubMed  CAS  Google Scholar 

  • Hu Y, Wilson GS (1997) Rapid changes in local extracellular rat brain glucose observed with an in vivo glucose sensor. J Neurochem 68:1745–1752

    PubMed  CAS  Google Scholar 

  • Huizing M, Ruitenbeek W, van den Heuvel LP, Dolce V, Iacobazzi V, Smeitink JA, Palmieri F, Trijbels JM (1998) Human mitochondrial transmembrane metabolite carriers: tissue distribution and its implication for mitochondrial disorders. J Bioenerg Biomembr 30:277–284

    PubMed  CAS  Google Scholar 

  • Iacobazzi V, Lauria G, Palmieri F (1997) Organization and sequence of the human gene for the mitochondrial citrate transport protein. DNA Seq 7:127–139

    PubMed  CAS  Google Scholar 

  • Ido Y (2007) Pyridine nucleotide redox abnormalities in diabetes. Antioxid Redox Signal 9:931–942

    PubMed  CAS  Google Scholar 

  • Jalil MA, Begum L, Contreras L, Pardo B, Iijima M, Li MX, Ramos M, Marmol P, Horiuchi M, Shimotsu K, Nakagawa S, Okubo A, Sameshima M, Isashiki Y, Del Arco A, Kobayashi K, Satrústegui J, Saheki T (2005) Reduced N-Acetylaspartate Levels in Mice Lacking Aralar, a Brain- and Muscle-type Mitochondrial Aspartate-glutamate Carrier. J Biol Chem 280: 31333–31339

    PubMed  CAS  Google Scholar 

  • Janski AM, Cornell NW (1980) Association of ATP citrate lyase with mitochondria. Biochem Biophys Res Commun 92:305–312

    PubMed  CAS  Google Scholar 

  • Jennings GT, Sechi S, Stevenson PM, Tuckey RC, Parmelee D, McAlister-Henn L (1994) Cytosolic NADP(+)-dependent isocitrate dehydrogenase. Isolation of rat cDNA and study of tissue-specific and developmental expression of mRNA. J Biol Chem 269:23128–23134

    PubMed  CAS  Google Scholar 

  • Jezek P, Huavata L (2005) Mitochondria in homeostasis of reactive oxygen species in cell tisúes and organism. Int J Biochem Cell Biol 37(12):2478–2503

    PubMed  CAS  Google Scholar 

  • Jin H, May M, Tranebjaerg L, Kendall E, Fontan G, Jackson J, Subramony SH, Arena F, Lubs H, Smith S, Stevenson R, Schwartz C, Vetrie D (1996) A novel X-linked gene, DDP, shows mutations in families with deafness (DFN-1), dystonia, mental deficiency and blindness. Nat Genet 14:177–180

    PubMed  CAS  Google Scholar 

  • Jitrapakdee S, Wallace JC (1999) Structure, function and regulation of pyruvate carboxylase. Biochem J 340(Pt 1):1–16

    PubMed  CAS  Google Scholar 

  • Jitrapakdee S, Vidal-Puig A, Wallace JC (2006) Anaplerotic roles of pyruvate carboxylase in mammalian tissues. Cell Mol Life Sci 63:843–854

    PubMed  CAS  Google Scholar 

  • Jo SH, Son MK, Koh HJ, Lee SM, Song IH, Kim YO, Lee YS, Jeong KS, Kim WB, Park JW, Song BJ, Huh TL (2001) Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP  +  −dependent isocitrate dehydrogenase. J Biol Chem 276: 16168–16176

    PubMed  CAS  Google Scholar 

  • Juurlink BH (1993) NADP-linked isozymes are the major forms of isocitrate dehydrogenase in mouse type-1-like astrocytes. Life Sci 52:1087–1090

    PubMed  CAS  Google Scholar 

  • Kaplan RS, Mayor JA, Wood DO (1993) The mitochondrial tricarboxylate transport protein. cDNA cloning, primary structure, and comparison with other mitochondrial transport proteins. J Biol Chem 268:13682–13690

    PubMed  CAS  Google Scholar 

  • Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305:99–103

    PubMed  CAS  Google Scholar 

  • Kaul R, Gao GP, Aloya M, Balamurugan K, Petrosky A, Michals K, Matalon R (1994) Canavan disease: mutations among Jewish and non-jewish patients. Am J Hum Genet 55:34–41

    PubMed  CAS  Google Scholar 

  • Kaul R, Gao GP, Matalon R, Aloya M, Su Q, Jin M, Jonson AB, Schutgens RB, Clarke JT (1996) Identification and expression of eight novel mutations among non-Jewish patients with Canavan disease. Am J Hum Genet 59:95–102

    PubMed  CAS  Google Scholar 

  • Kawasaki H, Nakayama S, Kretsinger RH (1998) Classification and evolution of EF-hand ­proteins. Biometals 11:277–295

    PubMed  CAS  Google Scholar 

  • Kirmani BF, Jacobowitz DM, Namboodiri MA (2003) Developmental increase of aspartoacylase in oligodendrocytes parallels CNS myelination. Brain Res Dev Brain Res 140:105–115

    PubMed  CAS  Google Scholar 

  • Kleinhans NM, Schweinsburg BC, Cohen DN, Müller R-A, Courchesne E (2007) N-acetyl aspartate in autism spectrum disorders: Regional effects and relationship to fMRI activation. Brain Res 1162:85–97

    PubMed  CAS  Google Scholar 

  • Knizley H Jr (1967) The enzymatic synthesis of N-acetyl-L-aspartic acid by a water-insoluble preparation of a cat brain acetone powder. J Biol Chem 242:4619–4622

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Sinasac DS, Iijima M, Boright AP, Begum L, Lee JR, Yasuda T, Ikeda S, Hirano R, Terazono H, Crackower MA, Kondo I, Tsui LC, Scherer SW, Saheki T (1999) The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nat Genet 22:159–163

    PubMed  CAS  Google Scholar 

  • Koehler CM, Leuenberger D, Merchant S, Renold A, Junne T, Schatz G (1999) Human deafness dystonia syndrome is a mitochondrial disease. Proc Natl Acad Sci USA 96:2141–2146

    PubMed  CAS  Google Scholar 

  • Koza RA, Kozak UC, Brown LJ, Leiter EH, MacDonald MJ, Kozak LP (1996) Sequence and tissue-dependent RNA expression of Mouse FAD-linked glycerol-3-phosphate dehydrogenase. Arch Biochem Biophys 336(1):97–104

    PubMed  CAS  Google Scholar 

  • Kull HR (1978) Association of glycolytic enzymes with particulate fractions from nerve endings. Biochem Biophys Acta 522:1–19

    Google Scholar 

  • Kunji ER (2004) The role and structure of mitochondrial carriers. FEBS Lett 564:239–244

    PubMed  CAS  Google Scholar 

  • Kunji ER, Robinson AJ (2006) The conserved substrate binding site of mitochondrial carriers. Biochim Biophys Acta 1757:1237–1248

    PubMed  CAS  Google Scholar 

  • Kurz GM, Wiesinger H, Hamprecht B (1993) Purification of cytosolic malic enzyme from bovine brain, generation of monoclonal antibodies, and immunocytochemical localization of the enzyme in glial cells of neural primary cultures. J Neurochem 60:1467–1474

    PubMed  CAS  Google Scholar 

  • LaNoue KF, Bryla J, Bassett DJ (1974a) Energy-driven aspartate efflux from heart and liver mitochondria. J Biol Chem 249:7514–7521

    PubMed  CAS  Google Scholar 

  • LaNoue KF, Meijer AJ, Brouwer A (1974b) Evidence for electrogenic aspartate transport in rat liver mitochondria. Arch Biochem Biophys 161:544–550

    PubMed  CAS  Google Scholar 

  • LaNoue KF, Tischler ME (1974) Electrogenic characteristics of the mitochondrial glutamate-aspartate antiporter. J Biol Chem 249:7522–7528

    PubMed  CAS  Google Scholar 

  • LaNoue KF, Schoolwerth AC (1979) Metabolite transport in mitochondria. Annu Rev Biochem 48:871–922

    PubMed  CAS  Google Scholar 

  • LaNoue KF, Carson V, Berkich DA, Hutson S (2006) Mitochondrial/cytosolic interactions via metabolite shuttles and transporters. Pages 589–617, in Gibson G and Dienel G, (eds.). Handbook of Neurochemistry and Molecular Neurobiology: Brain energetics. Integration of Molecular and cellular processes, 3rd edn. Springer, New York

    Google Scholar 

  • Laughton JD, Charnay Y, Belloir B, Pellerin L, Magistretti PJ, Bouras C (2000) Differential messenger RNA distribution of lactate dehydrogenase LDH-1 and LDH-5 isoforms in the rat brain. Neuroscience 96:619–625

    PubMed  CAS  Google Scholar 

  • Lee SM, Koh HJ, Park DC, Song BJ, Huh TL, Park JW (2002) Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med 32:1185–1196

    PubMed  CAS  Google Scholar 

  • Lehninger AL (1951) Phosphorylation coupled to oxidation of dihydrodiphosphopyridine nucleotide. J Biol Chem 190:345–359

    PubMed  CAS  Google Scholar 

  • Lepagnol-Bestel AM, Maussion G, Boda B, Cardona A, Iwayama Y, Delezoide AL, Moalic JM, Muller D, Dean B, Yoshikawa T, Gorwood P, Buxbaum JD, Ramoz N, Simonneau M (2008) SLC25A12 expression is associated with neurite outgrowth and is upregulated in the prefrontal cortex of autistic subjects. Mol Psychiatry 13:385–397

    PubMed  CAS  Google Scholar 

  • Leveille PJ, McGinnis JF, Maxwell DS, de Vellis J (1980) Immunocytochemical localization of glycerol-3-phosphate dehydrogenase in rat oligodendrocytes. Brain Res 196:287–305

    PubMed  CAS  Google Scholar 

  • Loeber G, Dworkin MB, Infante A, Ahorn H (1994) Characterization of cytosolic malic enzyme in human tumor cells. FEBS Lett 344:181–186

    PubMed  CAS  Google Scholar 

  • Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH, Han X, Takano T, Wang S, Sim FJ, Goldman SA, Nedergaard M (2007) The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27(45):12255–12266

    PubMed  CAS  Google Scholar 

  • Loverde AW, Lehrer GM (1973) Subcellular distribution of isocitrate dehydrogenases in neonatal and adult mouse brain. J Neurochem 20:441–448

    PubMed  CAS  Google Scholar 

  • Lu ZH, Chakraborty G, Ledeen RW, Yahya D, Wu G (2004) N-Acetylaspartate synthase is bimodally expressed in microsomes and mitochondria of brain. Brain Res Mol Brain Res 122: 71–78

    PubMed  CAS  Google Scholar 

  • Llorente I, del Arco A, Satrústegui J, Pardo B (2007) Involvement of aralar and early ROS production in lactate-mediated neuroprotection against excitotoxicity 3rd European Society of Neuroscience Conference on Advances in molecular mechanisms of neurological disorders. Salamanca 19–22 May. J Neurochem 101(suppl):31

    Google Scholar 

  • MacDonald MJ (1995) Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. Further implication of cytosolic NADPH in insulin secretion. J Biol Chem 270:20051–20058

    PubMed  CAS  Google Scholar 

  • MacDonald MJ, Brown LJ (1996) Calcium activation of mitochondrial glycerol phosphate dehydrogenase restudied. Arch Biochem Biophys 326(1):79–84

    PubMed  CAS  Google Scholar 

  • MacDonald MJ, Longacre MJ, Kendrick MA (2009) Mitochondrial malic enzyme (ME2) in pancreatic islets of the human, rat and mouse and clonal insulinoma cells. Simple enzyme assay for mitochondrial malic enzyme 2. Arch Biochem Biophys 488:100–104

    PubMed  CAS  Google Scholar 

  • Madhavarao CN, Chinopoulos C, Chandrasekaran K, Namboidiri MA (2003) Characterization of the N-acetylaspartate biosynthetic enzyme from rat brain. J Neurochem 86:824–835

    PubMed  CAS  Google Scholar 

  • Madhavarao CN, Arun P, Moffett JR, Szucs S, Surendran S, Matalon R, Garbern J, Hristova D, Johnson A, Jiang W, Namboodiri MA (2005) Defective N-acetylaspartate catabolism reduces brain acetate levels and myelin lipid synthesis in Canavan’s disease. Proc Natl Acad Sci USA 102:5221–5226

    PubMed  CAS  Google Scholar 

  • Maeng O, Kim YC, Shin HJ, Lee JO, Huh TL, Kang KI, Kim YS, Paik SG, Lee H (2004) Cytosolic NADP(+)-dependent isocitrate dehydrogenase protects macrophages from LPS-induced nitric oxide and reactive oxygen species. Biochem Biophys Res Commun 317:558–564

    PubMed  CAS  Google Scholar 

  • Malik P, McKenna MC, Tildon JT (1993) Regulation of malate dehydrogenases from neonatal, adolescent, and mature rat brain. Neurochem Res 18:247–257

    PubMed  CAS  Google Scholar 

  • Mangia S, Garreffa G, Bianciardi M, Giove F, di Salle F, Maraviglia B (2003) The aerobic brain: lactate decrease at the onset of neural activity. Neuroscience 118:7–10

    PubMed  CAS  Google Scholar 

  • Mangia S, Tkác I, Gruetter R, Van del Moortele PF, Maraviglia B, Ugurbil K (2007) Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from 1 H NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab 27:1055–1063

    PubMed  CAS  Google Scholar 

  • Maran A, Cranston I, Lomas J, Macdonald I, Amiel SA (1994) Protection by lactate of cerebral function during hypoglycaemia. Lancet 343:16–20

    PubMed  CAS  Google Scholar 

  • Mármol P, Pardo B, Wiederkehr A, del Arco A, Wollheim CB, Satrústegui J (2009) Requirement for aralar and its Ca2+-binding sites in Ca2+ signal transduction in mitochondria from INS-1 clonal beta-cells. J Biol Chem 284:515–524

    PubMed  Google Scholar 

  • Matalon R, Michals K, Sebesta D, Deanching M, Gashkoff P, Casanova J (1988) Aspartoacylase deficiency and N-acetylaspartic aciduria in patients with Canavan disease. Am J Med Genet 29: 463–471

    PubMed  CAS  Google Scholar 

  • Matalon R, Rady PL, Platt KA, Skinner HB, Quast MJ, Campbell GA, Matalon K, Ceci JD, Tyring SK, Nehls M, Surendran S, Wei J, Ezell EL, Szucs S (2000) Knock-out mouse for Canavan disease: a model for gene transfer to the central nervous system. J Gene Med 2:165–175

    PubMed  CAS  Google Scholar 

  • McCormack JG, Bromidge ES, Dawes NJ (1988) Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive dehydrogenases within intact rat-kidney mitochondria. Biochim Biophys Acta 934:282–292

    PubMed  CAS  Google Scholar 

  • McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425

    PubMed  CAS  Google Scholar 

  • McKenna MC, Tildon JT, Stevenson JH, Boatrigh TR, Huang S (1993) Regulation of energy metabolism in synaptic terminals and cultured rat brain astrocytes: differences revealed using aminooxyacetate. Dev Neurosci 15:320–329

    PubMed  CAS  Google Scholar 

  • McKenna MC, Tildon JT, Stevenson JH, Hopkins IB (1994) Energy metabolism in cortical synaptic terminals from weanling and mature rat brain: evidence for multiple compartments of tricarboxylic acid cycle activity. Dev Neurosci 16:291–300

    PubMed  CAS  Google Scholar 

  • McKenna MC, Tildon JT, Stevenson JH, Huang X, Kingwell KG (1995) Regulation of mitochondrial and cytosolic malic enzymes from cultured rat brain astrocytes. Neurochem Res 20:1491–1501

    PubMed  CAS  Google Scholar 

  • McKenna MC, Stevenson JH, Huang X, Tildon JT, Zielke CL, Hopkins IB (2000) Mitochondrial malic enzyme activity is much higher in mitochondria from cortical synaptic terminals compared with mitochondria from primary cultures of cortical neurons or cerebellar granule cells. Neurochem Int 36:451–459

    PubMed  CAS  Google Scholar 

  • McKenna MC, Waagepetersen HS, Schousboe A, Sonnewald U (2006) Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. Biochem Pharmacol 71:399–407

    PubMed  CAS  Google Scholar 

  • Medina JM (1985) The role of lactate as an energy substrate for the brain during the early neonatal period. Biol Neonate 48:237–244

    PubMed  CAS  Google Scholar 

  • Mehta V, Namboodiri MA (1995) N-acetylaspartate as an acetyl source in the nervous system. Brain Res Mol Brain Res 31:151–157

    PubMed  CAS  Google Scholar 

  • Miller KE, Richards BA, Kriebel RM (2002) Glutamine-, glutamine synthetase-, glutamate dehydrogenase- and pyruvate carboxylase-immunoreactivities in the rat dorsal root ganglion and peripheral nerve. Brain Res 945:202–211

    PubMed  CAS  Google Scholar 

  • Minich T, Yokota S, Dringen R (2003) Cytosolic and mitochondrial isoforms of NADP  +  −dependent isocitrate dehydrogenases are expressed in cultured rat neurons, astrocytes, oligodendrocytes and microglial cells. J Neurochem 86:605–614

    PubMed  CAS  Google Scholar 

  • Miyake S, Yamashita T, Taniguchi M, Tamatani M, Sato K, Hawai Y, Senba E, Mitsuda N, Hori O, Yamaguchi A, Tohyama M (2002a) Expression of mitochondrial tricarboxylate carrier TCC mRNA and protein in the rat brain. Brain Res Mol Brain Res 100:67–73

    PubMed  CAS  Google Scholar 

  • Miyake S, Yamashita T, Taniguchi M, Tamatani M, Sato K, Tohyama M (2002b) Identification and characterization of a novel mitochondrial tricarboxylate carrier. Biochem Biophys Res Commun 295:463–468

    PubMed  CAS  Google Scholar 

  • Mizuarai S, Miki S, Araki H, Takahashi K, Kotani H (2005) Identification of dicarboxylate carrier Slc25a10 as malate transporter in de novo fatty acid synthesis. J Biol Chem 280:32434–32441

    PubMed  CAS  Google Scholar 

  • Montz HP, Althaus HH, Gebicke-Haerter PJ, Neuhoff V (1985) Glycerol phosphate dehydrogenase activity of oligodendrocytes isolated from adult pig brain: its inducibility by hydrocortisone. J Neurochem 45:1201–1204

    PubMed  CAS  Google Scholar 

  • Moreau B, Nelson C, Parekh AB (2006) Biphasic regulation of mitochondrial Ca2+ uptake by cytosolic Ca2+ concentration. Curr Biol 16(16):1672–1677

    PubMed  CAS  Google Scholar 

  • Nakayama S, Moncrief ND, Kretsinger RH (1992) Evolution of EF-hand calcium-modulated proteins. II. Domains of several subfamilies have diverse evolutionary histories. J Mol Evol 34:416–448

    PubMed  CAS  Google Scholar 

  • Nguyen NH, Brathe A, Hassel B (2003) Neuronal uptake and metabolism of glycerol and the neuronal expression of mitochondrial glycerol-3-phosphate dehydrogenase. J Neurochem 85:831–842

    PubMed  CAS  Google Scholar 

  • Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80(1):315–360

    PubMed  CAS  Google Scholar 

  • Nissen C, Schousboe A (1979) Activity and isoenzyme pattern of lactate dehydrogenase in astroblasts cultured from brains of newborn mice. J Neurochem 32:1787–1792

    PubMed  CAS  Google Scholar 

  • Novials A, Vidal J, Franco C, Ribera F, Sener A, Malaisse WJ, Gomis R (1997) Mutation in the calcium-binding domain of the mitochondrial glycerophosphate dehydrogenase gene in a family of diabetic subjects. Biochem Biophys Res Commun 231:570–572

    PubMed  CAS  Google Scholar 

  • Oliveira G, Diogo L, Grazina M, Garcia P, Borges L, Vicente AM, Oliveira CR (2005) Mitochondrial dysfunction in autism spectrum disorders. Dev Med Child Neurol 47(3):185–189

    PubMed  CAS  Google Scholar 

  • Otsuka H, Harada M, Mori K, Hisaoka S, Nishitani H (1999) Brain metabolites in the hippocampus-amygdala region and cerebellum in autism: an 1 H-MR spectroscopy study. Neuroradiology 41:517–519

    PubMed  CAS  Google Scholar 

  • Palaiologos G, Hertz L, Schousboe A (1988) Evidence that aspartate aminotransferase activity and ketodicarboxylate carrier function are essential for biosynthesis of transmitter glutamate. J Neurochem 51:317–320

    PubMed  CAS  Google Scholar 

  • Palmieri L, Vozza A, Agrimi G, De Marco V, Runswick MJ, Palmieri F, Walker JE (1999) Identification of the yeast mitochondrial transporter for oxaloacetate and sulfate. J Biol Chem 274:22184–22190

    PubMed  CAS  Google Scholar 

  • Palmieri L, Pardo B, Lasorsa FM, del Arco A, Kobayashi K, Iijima M, Runswick MJ, Walker JE, Saheki T, Satrústegui J, Palmieri F (2001) Citrin and aralar1 are Ca2+-stimulated aspartate/glutamate transporters in mitochondria. EMBO J 20:5060–5069

    PubMed  CAS  Google Scholar 

  • Palmieri F (2004) The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch 447:689–709

    PubMed  CAS  Google Scholar 

  • Pardo B, Contreras L, Serrano A, Ramos M, Kobayashi K, Iijima M, Saheki T, Satrústegui J (2006) Essential role of aralar in the transduction of small Ca2+ signals to neuronal mitochondria. J Biol Chem 281:1039–1047

    PubMed  CAS  Google Scholar 

  • Pardo B, Rodrigues TB, Contreras L, Garzón M, Llorente-Folch I, Kobayashi K, Saheki T, Cerdán S, Satrústegui J (2011) Brain glutamine synthesis requires neuronal-born aspartate as amino donor for glial glutamate formation. J Cereb Blood Flow Metab 31(1):90–101

    Google Scholar 

  • Paschen SA, Rothbauer U, Kaldi K, Bauer MF, Neupert W, Brunner M (2000) The role of the TIM8-13 complex in the import of Tim23 into mitochondria. EMBO J 19:6392–6400

    PubMed  CAS  Google Scholar 

  • Passarella S, Barile M, Atlante A, Quagliariello E (1984) Oxaloacetate uptake into rat brain mitochondria and reconstruction of the malate/oxaloacetate shuttle. Biochem Biophys Res Commun 119:1039–1046

    PubMed  CAS  Google Scholar 

  • Passarella S, Atlante A, Quagliariello E (1985) Oxaloacetate permeation in rat kidney mitochondria: pyruvate/oxaloacetate and malate/oxaloacetate translocators. Biochem Biophys Res Commun 129:1–10

    PubMed  CAS  Google Scholar 

  • Passarella S, Atlante A, Valenti D, de Bari L (2003) The role of mitochondrial transport in energy metabolism. Mitochondrion 2:319–343

    PubMed  CAS  Google Scholar 

  • Patel TB, Clark JB (1979) Synthesis of N-acetyl-L-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport. Biochem J 184:539–546

    PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629

    PubMed  CAS  Google Scholar 

  • Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, Stella N, Magistretti PJ (1998) Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci 20:291–299

    PubMed  CAS  Google Scholar 

  • Pellerin L (2003) Lactate as a pivotal element in neuron-glia metabolic cooperation. Neurochem Int 43:331–338

    PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (2004) Neuroscience. Let there be (NADH) light. Science 305:50–52

    PubMed  CAS  Google Scholar 

  • Pierre K, Pellerin L, Debernardi R, Riederer BM, Magistretti PJ (2000) Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy. Neuroscience 100:617–627

    PubMed  CAS  Google Scholar 

  • Pierre K, Magistretti PJ, Pellerin L (2002) MCT2 is a major neuronal monocarboxylate transporter in the adult mouse brain. J Cereb Blood Flow Metab 22:586–595

    PubMed  CAS  Google Scholar 

  • Plaut GW, Cook M, Aogaichi T (1983) The subcellular location of isozymes of NADP-isocitrate dehydrogenase in tissues from pig, ox and rat. Biochim Biophys Acta 760:300–308

    PubMed  CAS  Google Scholar 

  • Price MT, Pusateri ME, Crow SE, Buchsbaum S, Olney JW, Lowry OH (1984) Uptake of exogenous aspartate into circumventricular organs but not other regions of adult mouse brain. J Neurochem 42:740–744

    PubMed  CAS  Google Scholar 

  • Prichard J, Rothman D, Novotny E, Petroff O, Kuwabara T, Avison M, Howseman A, Hanstock C, Shulman R (1991) Lactate rise detected by 1 H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci USA 88:5829–5831

    PubMed  CAS  Google Scholar 

  • Purvis JL, Lowenstein JM (1961) The relation between intra- and extramitochondrial pyridine nucleotides. J Biol Chem 236:2794–2803

    PubMed  CAS  Google Scholar 

  • Rabionet R, McCauley JL, Jaworski JM, Ashley-Koch AE, Martin ER, Sutcliffe JS, Haines JL, DeLong GR, Abramson RK, Wright HH, Cuccaro ML, Gilbert JR, Pericak-Vance MA (2006) Lack of association between autism and SLC25A12. Am J Psychiatry 163:929–931

    PubMed  Google Scholar 

  • Rafalowska U (1979) Transport of malate and citrate into rat brain mitochondria under hypoxia and anesthesia. Neurochem Res 4:355–364

    PubMed  CAS  Google Scholar 

  • Ramos M, del Arco A, Pardo B, Martinez-Serrano A, Martinez-Morales JR, Kobayashi K, Yasuda T, Bogonez E, Bovolenta P, Saheki T, Satrústegui J (2003) Developmental changes in the Ca2  +  −regulated mitochondrial aspartate-glutamate carrier aralar1 in brain and prominent expression in the spinal cord. Brain Res Dev Brain Res 143:33–46

    PubMed  CAS  Google Scholar 

  • Ramoz N, Reichert JG, Smith CJ, Silverman JM, Bespalova IN, Davis KL, Buxbaum JD (2004) Linkage and association of the mitochondrial aspartate/glutamate carrier SLC25A12 gene with autism. Am J Psychiatry 161:662–669

    PubMed  Google Scholar 

  • Raschaert J, Malaisse WJ (1991) Hexose metabolism in pancreatic islets. Glucose-induced and Ca2+ -dependent activation of FAD-glycerophosphate dehydrogenase. Biochem J 278:335–340

    Google Scholar 

  • Roesch K, Curran SP, Tranebjaerg L, Koehler CM (2002) Human deafness dystonia syndrome is caused by a defect in assembly of the DDP1/TIMM8a-TIMM13 complex. Hum Mol Genet 11:477–486

    PubMed  CAS  Google Scholar 

  • Roesch K, Hynds PJ, Varga R, Tranebjaerg L, Koehler CM (2004) The calcium-binding aspartate/glutamate carriers, citrin and aralar1, are new substrates for the DDP1/TIMM8a-TIMM13 complex. Hum Mol Genet 13:2101–2111

    PubMed  CAS  Google Scholar 

  • Rohde M, Lim F, Wallace JC (1991) Electron microscopic localization of pyruvate carboxylase in rat liver and Saccharomyces cerevisiae by immunogold procedures. Arch Biochem Biophys 290:197–201

    PubMed  CAS  Google Scholar 

  • Ros J, Pecinska N, Alessandri B, Landolt H, Fillenz M (2001) Lactate reduces glutamate-induced neurotoxicity in rat cortex. J Neurosci Res 66:790–794

    PubMed  CAS  Google Scholar 

  • Rubi B, del Arco A, Bartley C, Satrústegui J, Maechler P (2004) The malate-aspartate NADH shuttle member Aralar1 determines glucose metabolic fate, mitochondrial activity, and insulin secretion in beta cells. J Biol Chem 279:55659–55666

    PubMed  CAS  Google Scholar 

  • Runswick M, Walker J, Bisaccia F, Lacobazzi V, Palmieri F (1990) Sequence of the bovine 2-oxoglutarate/malate carrier protein: structural relationship to other mitochondrial transport proteins. Biochemistry 29:11033–11040

    PubMed  CAS  Google Scholar 

  • Rutter GA, Pralong WF, Wollheim CB (1992) Regulation of mitochondrial glycerol-phosphate dehydrogenase by Ca2+ within electropermeabilized insulin-secreting cells (INS-1). Biochim Biophys Acta 1175:107–113

    PubMed  CAS  Google Scholar 

  • Sanz R, del Arco A, Ayuso C, Ramos C, Satrústegui J (2000) Assignment of the calcium-binding mitochondrial carrier Aralar1 gene (SLC25A12) to human chromosome band 2q31 by in situ hybridization. Cytogenet Cell Genet 89:143–144

    PubMed  CAS  Google Scholar 

  • Saraste M, Walker JE (1982) Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase. FEBS Lett 144:250–254

    PubMed  CAS  Google Scholar 

  • Satrústegui J, Contreras L, Ramos M, Mármol P, Del Arco A, Saheki T, Pardo B (2007a) Role of aralar, the mitochondrial transporter of aspartate-glutamate, in brain N-acetylaspartate formation and Ca2+ signaling in neuronal mitochondria. J Neurosci Res 85:3359–3366

    PubMed  Google Scholar 

  • Satrústegui J, Pardo B, Del Arco A (2007b) Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol Rev 87:29–67

    PubMed  Google Scholar 

  • Sazanov LA, Jackson JB (1994) Proton-translocating transhydrogenase and NAD- and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria. FEBS Lett 344:109–116

    PubMed  CAS  Google Scholar 

  • Schurr A, West CA, Rigor BM (1988) Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 240:1326–1328

    PubMed  CAS  Google Scholar 

  • Schurr A, West CA, Rigor BM (1989) Electrophysiology of energy metabolism and neuronal function in the hippocampal slice preparation. J Neurosci Methods 28:7–13

    PubMed  CAS  Google Scholar 

  • Schurr A, Payne RS, Miller JJ, Rigor BM (1997a) Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: an in vitro study. Brain Res 744:105–111

    PubMed  CAS  Google Scholar 

  • Schurr A, Payne RS, Miller JJ, Rigor BM (1997b) Glia are the main source of lactate utilized by neurons for recovery of function posthypoxia. Brain Res 774:221–224

    PubMed  CAS  Google Scholar 

  • Schurr A, Miller JJ, Payne RS, Rigor BM (1999) An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. J Neurosci 19:34–39

    PubMed  CAS  Google Scholar 

  • Schurr A (2006) Lactate: the ultimate cerebral oxidative energy substrate? J Cereb Blood Flow Metab 26:142–152

    PubMed  CAS  Google Scholar 

  • Schurr A, Payne RS (2007) Lactate, not pyruvate, is neuronal aerobic glycolysis end product: an in vitro electrophysiological study. Neuroscience 147:613–619

    PubMed  CAS  Google Scholar 

  • Segurado R, Conroy J, Meally E, Fitzgerald M, Gill M, Gallagher L (2005) Confirmation of association between autism and the mitochondrial aspartate/glutamate carrier SLC25A12 gene on chromosome 2q31. Am J Psychiatry 162:2182–2184

    PubMed  Google Scholar 

  • Shank RP, Bennett GS, Freytag SO, Campbell GL (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res. 329 (1–2): 364–367

    Google Scholar 

  • Shank RP, Leo GC, Zielke HR (1993) Cerebral metabolic compartmentation as revealed by nuclear magnetic resonance analysis of D-[1-13 C]glucose metabolism. J Neurochem 61:315–323

    PubMed  CAS  Google Scholar 

  • Shen J (2005) In vivo carbon-13 magnetization transfer effect. Detection of aspartate aminotransferase reaction. Magn Reson Med 54:1321–1326

    PubMed  Google Scholar 

  • Silverman JM, Buxbaum JD, Ramoz N, Schmeidler J, Reichenberg A, Hollander E, Angelo G, Smith CJ, Kryzak LA (2008) Autism-related routines and rituals associated with a mitochondrial aspartate/glutamate carrier SLC25A12 polymorphism. Am J Med Genet B Neuropsychiatr Genet 147:408–410

    PubMed  Google Scholar 

  • Sinasac DS, Crackower MA, Lee JR, Kobayashi K, Saheki T, Scherer SW, Tsui LC (1999) Genomic structure of the adult-onset type II citrullinemia gene, SLC25A13, and cloning and expression of its mouse homologue. Genomics 62:289–292

    PubMed  CAS  Google Scholar 

  • Szutowicz A, Srere PA (1983) Purification and some properties of ATP-citrate lyase from rat brain. Arch Biochem Biophys 221(1):168–174

    PubMed  CAS  Google Scholar 

  • Tholey G, Roth-Schechter BF, Mandel P (1981) Activity and isoenzyme pattern of lactate dehydrogenase in neurons and astroblasts cultured from brains of chick embryos. J Neurochem 36:77–81

    PubMed  CAS  Google Scholar 

  • Tildon JT, McKenna MC, Stevenson J, Couto R (1993) Transport of L-lactate by cultured rat brain astrocytes. Neurochem Res 18(2):177–184

    PubMed  CAS  Google Scholar 

  • Tranebjaerg L, Schwartz C, Eriksen H, Andreasson S, Ponjavic V, Dahl A, Stevenson RE, May M, Arena F, Barker D et al (1995) A new X linked recessive syndrome with blindness, dystonia, fractures, and mental deficiency is linked to Xq22. J Med Genet 32:257–263

    PubMed  CAS  Google Scholar 

  • Tretter L, Takacs K, Hegedus V, Adam-Vizi V (2007) Characteristcs of α–glycerophosphate-evoked H2O2 generation in brain mitochondria. J Neurochem 100:650–663

    PubMed  CAS  Google Scholar 

  • Turunen J, Ylisaukko-oja T, Kilpinen H, Rehnstrom K, Kempas E, Vanhala R, Niemenin-von Wendt T, von Wendt L, Peltonen L (2007) Association analysis of SLC25A12 and EN2 in the finnish families with autism-spectrum disorders. Am J Med Genet B Neuropsychiatr Genet 141B(7):766, abstract

    Google Scholar 

  • Urenjak J, Williams SR, Gadian DG, Noble M (1992) Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro. J Neurochem 59:55–61

    PubMed  CAS  Google Scholar 

  • Urenjak J, Williams SR, Gadian DG, Noble M (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 31(3):981–989

    Google Scholar 

  • Vicario C, Arizmendi C, Malloch G, Clark JB, Medina JM (1991) Lactate utilization by isolated cells from early neonatal rat brain. J Neurochem 57:1700–1707

    PubMed  CAS  Google Scholar 

  • Vogel R, Hamprecht B, Wiesinger H (1998) Malic enzyme isoforms in astrocytes: comparative study on activities in rat brain tissue and astroglia-rich primary cultures. Neurosci Lett 247:123–126

    PubMed  CAS  Google Scholar 

  • Vogel R, Wiesinger H, Hamprecht B, Dringen R (1999) The regeneration of reduced glutathione in rat forebrain mitochondria identifies metabolic pathways providing the NADPH required. Neurosci Lett 275:97–100

    PubMed  CAS  Google Scholar 

  • Waagepetersen HS, Qu H, Schousboe A, Sonnewald U (2001) Elucidation of the quantitative significance of pyruvate carboxylation in cultured cerebellar neurons and astrocytes. J Neurosci Res 66:763–770

    PubMed  CAS  Google Scholar 

  • Walker JE, Runswick MJ (1993) The mitochondrial transport protein superfamily. J Bioenerg Biomembr 25:435–446

    PubMed  CAS  Google Scholar 

  • Wallace JC, Jitrapakdee S, Chapman-Smith A (1998) Pyruvate carboxylase. Int J Biochem Cell Bio l 30:1–5

    CAS  Google Scholar 

  • Walz W, Mukerji S (1988) Lactate release from cultured astrocytes and neurons: a comparison. Glia 1:366–370

    PubMed  CAS  Google Scholar 

  • Watkins J, Basu S, Bogenhagen DF (2008) A quantitative proteomic analysis of mitochondrial participation in p19 cell neuronal differentiation. J Proteome Res 7(1):328–338

    PubMed  CAS  Google Scholar 

  • Watson JA, Lowenstein JM (1970) Citrate and the conversion of carbohydrate into fat. Fatty acid synthesis by a combination of cytoplasm and mitochondria. J Bio Chem 245:5993–6002

    CAS  Google Scholar 

  • Wernette ME, Ochs RS, Lardy HA (1981) Ca2+ stimulation of rat liver mitochondrial glycerolphosphate dehydrogenase. J Biol Chem 256(24):12767–12771

    PubMed  CAS  Google Scholar 

  • Wibom R, Lasorsa FM, Töhönen V, Barbaro M, Sterky FH, Kucinski T, Naess K, Jonsonn M, Pierri CL, Palmieri F, Wedell A (2009) AGC1 deficiency associated with global cerebral hypomyelination. N Engl J Med 361:489–495

    PubMed  Google Scholar 

  • Williamson DH, Lund P, Krebs HA (1967) The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J 103:514–527

    PubMed  CAS  Google Scholar 

  • Williamson JR, Cooper RH (1980) Regulation of the citric acid cycle in mammalian systems. FEBS Lett 117(Suppl):K73–K85

    PubMed  Google Scholar 

  • Winkler BS, DeSantis N, Solomon F (1986) Multiple NADPH-producing pathways control glutathione (GSH) content in retina. Exp Eye Res 43:829–847

    PubMed  CAS  Google Scholar 

  • Xu Y, Ola MS, Berkich DA, Gardner TW, Barber AJ, Palmieri F, Hutson SM, LaNoue KF (2007) Energy sources for glutamate neurotransmission in the retina: absence of the aspartate/glutamate carrier produces reliance on glycolysis in glia. J Neurochem 101(1):120–131

    PubMed  CAS  Google Scholar 

  • Yang L, Luo H, Vinay P, Wu J (1996) Molecular cloning of the cDNA of mouse mitochondrial NADP-dependent isocitrate dehydrogenase and the expression of the gene during lymphocyte activation. J Cell Biochem 60:400–410

    PubMed  CAS  Google Scholar 

  • Yoshida Y, Holloway GP, Ljubicic V, Hatta H, Spriet LL, Hood DA, Bonen A (2007) Negligible direct lactate oxidation in subsarcolemmal and intermyofibrillar mitochondria obtained from red and white rat skeletal muscle. J Physiol 582:1317–1335

    PubMed  CAS  Google Scholar 

  • Yu AC, Drejer J, Hertz L, Schousboe A (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 41:1484–1487

    PubMed  CAS  Google Scholar 

  • Yudkoff M, Nelson D, Daikhin Y, Erecinska M (1994) Tricarboxylic acid cycle in rat brain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle. J Biol Chem 269:27414–27420

    PubMed  CAS  Google Scholar 

  • Zambrowicz BP, Friedrich GA, Buxton EC, Lilleberg SL, Person Ch, Sands AT (1998) Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 392:608–611

    PubMed  CAS  Google Scholar 

  • Zhou J, Olcese R, Qin N, Noceti F, Birnbaumer L, Stefani E (1997) Feedback inhibition of Ca2+ channels by Ca2+ depends on a short sequence of the C terminus that does not include the Ca2+ -binding function of a motif with similarity to Ca2+ -binding domains. Proc Natl Acad Sci USA 94:2301–2305

    PubMed  CAS  Google Scholar 

  • Zeng BJ, Wang ZH, Ribeiro LA, Leone P, De Gasperi R, Kim SJ, Raghavan S, Ong E, Pastores GM, Kolodny EH (2002) Identification and characterization of novel mutations of the aspartoacylase gene in non-Jewish patients with Canavan disease. J Inherit Metab Dis 25:557–570

    PubMed  CAS  Google Scholar 

  • Zoghbi HY (2003) Postnatal neurodevelopmental disorders: meeting at the synapse? Science 302(5646):826–828

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Prof. J. Satrústegui for critical reading of the manuscript, for helpful suggestions and discussions and for support. The authors would like to thank funding from the Ministerio de Educación y Ciencia (contract grant BFU2005-C02-01, GEN2003-20235-C05-03/NAC to JS), Instituto de Salud Carlos III del Ministerio de Sanidad (PI042457 to JS), European Union (contract grant number: LSHM-CT-2006-518153 to JS); Mutua Madrileña (to BP), and the institucional support of the Ramón Areces Foundation to the Centro de Biología Molecular Severo Ochoa. The CIBER de Enfermedades Raras is an initiative of the ISCIII.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Pardo Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pardo, B., Contreras, L. (2012). Redox Shuttles in the Brain. In: Choi, IY., Gruetter, R. (eds) Neural Metabolism In Vivo. Advances in Neurobiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1788-0_29

Download citation

Publish with us

Policies and ethics