Skip to main content

Cerebral Acetate Metabolism: Towards Its In Vivo Assessment

  • Chapter
  • First Online:
  • 1545 Accesses

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 4))

Abstract

Acetate as precursor and tracer for cerebral metabolism has received high interest since the late 1950s when it was first shown with radiolabels that, among others, acetate incorporates very differently into cerebral metabolites than glucose. Subsequent work has taken advantage of acetate’s exclusive cerebral uptake into glial cells in order to probe metabolic compartmentation and the interplay of the intricately and inextricably intermingled glial and neuronal tissues in intact brain. The present review takes a three-pronged approach to outline the current understanding of cerebral acetate uptake, metabolism and the learning derived thereof with regard to the integral metabolism in mammalian brain. (1) Acetate-based tracer modalities including radiography, positron emission tomography (PET) and magnetic resonance spectroscopy (MRS) together with corresponding labelling concepts ranging from specific (radio-)activity to advanced multi-labelling strategies used for assessing cerebral metabolism are presented. (2) Translational aspects and efforts in moving the assessment of cerebral acetate metabolism from cell cultures and ex vivo tissue toward its non-invasive detection in situ in the brain of living animals and man are then discussed. (3) The original notion of cerebral substrate selection is complemented with current data on metabolic compartmentation and substrate trafficking to build a comprehensive, though in part still controversial view on cerebral metabolism. A collective of studies, which have utilised acetate to explore cerebral metabolism in health and disease, are put into perspective with this latter notion. Metabolism in brain tumours and cerebral ischemia as well as alterations in cerebral metabolism brought about by primarily extra-cerebral disorders such as diabetes and thyroid hormone deficits are discussed. Finally, acetate’s involvement in psychiatric and neurological disorders receives particular focus as this area is largely dominated by newer work addressing neurotransmitter balances and receptor involvement from a glial stance and is offering potential links to functional and behavioural data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Badar-Goffer RS, Bachelard HS, Morris PG (1990) Cerebral metabolism of acetate and glucose studied by 13C-n.m.r. spectroscopy: a technique for investigating metabolic compartmentation in the brain. Biochem J 266:133–139

    PubMed  CAS  Google Scholar 

  • Badar-Goffer RS, Ben-Yoseph O, Bachelard HS, Morris PG (1992) Neuronal-glial metabolism under depolarizing conditions: a 13C-n.m.r study. Biochem J 282:225–230

    PubMed  CAS  Google Scholar 

  • Baslow MH (2003) N-Acetylaspartate in the vertebrate brain: metabolism and function. Neurochem Res 28:941–953

    PubMed  CAS  Google Scholar 

  • Berl S, Clarke DD (1983) The metabolic compartmentation concept. In: Hertz L, Kyamne E, McGeer G, Schousboe A (eds) Glutamine, glutamate and GABA in the central nervous system. Alan R. Liss Inc, New York, pp 205–217

    Google Scholar 

  • Berl S, Nicklas WJ, Clarke DD (1968) Compartmentation of glutamic acid and metabilism in brain slices. J Neurochem 15:131–140

    PubMed  CAS  Google Scholar 

  • Blüml S, Moreno-Torres A, Shic F, Nguy C-H, Ross BD (2002) Tricarboxylic acid cycle of glia in the in vivo human brain. NMR Biomed 15:1–5

    PubMed  Google Scholar 

  • Bradford HF (1989) Glutamate, GABA and epilepsy. Epilepsia 30:17–25

    Google Scholar 

  • Brand A, Richter-Landsberg C, Leibfritz D (1997) Metabolism of acetate in rat brain neurons, astrocytes and coculture: metabolic interactions between neurons and glia cells, monitored by NMR spectroscopy. Cell Mol Biol 43:645–657

    PubMed  CAS  Google Scholar 

  • Brenner E, Kondziella D, Haberg A, Sonnewald U (2005) Impaired glutamine metabolism in NMDA receptor hypofunction induced by MK801. J Neurochem 94:1594–1603

    PubMed  CAS  Google Scholar 

  • Brenner E, Sonnewald U, Schweitzer A, Andrieux A, Nehling A (2007) Hypoglutamatergic activity in the STOP knockout mouse: a potential model for chronic untreated schizophrenia. J Neurosci Res 85:3487–3493

    PubMed  CAS  Google Scholar 

  • Carroll PT (1997) Evidence to suggest that extracellular acetate is accumulated by rat hippocampal cholinergic nerve terminals for acetylcholine formation and release. Brain Res 753:47–55

    PubMed  CAS  Google Scholar 

  • Cerdan S, Künnecke B, Seelig J (1990) Cerebral metabolism of [1,2-13C2] acetate as determined by in vivo and in vitro 13C NMR. J Biol Chem 265:12916–12926

    PubMed  CAS  Google Scholar 

  • Chapa F, Künnecke B, Calvo R, del Rey FE, de Escobar GM, Cerdán S (1995) Adult-onset hypothyroidism and the cerebral metabolism of (1,2-13C2) acetate as detected by 13C nuclear magnetic resonance. Endocrinology 136:296–305

    PubMed  CAS  Google Scholar 

  • Chapa F, Cruz F, Garcia-Martin ML, Garcia-Espinosa MA, Cerdán S (2000) Metabolism of (1–13C) glucose and (2–13C, 2–2H3) acetate in the neuronal and glial compartments of the adult rat brain as detected by 13C, 2H NMR spectroscopy. Neurochem Int 37:217–228

    PubMed  CAS  Google Scholar 

  • Chateil J-F, Biran M, Thiaudière E, Canioni P, Merle M (2001) Metabolism of [1-13C] glucose and [2-13C] acetate in the hypoxic rat brain. Neurochem Int 38:399–407

    PubMed  CAS  Google Scholar 

  • Chowdhury GMI, Patel AB, Mason GF, Rothman DL, Behar KL (2007) Glutamatergic and GABAergic neurotransmitter cycling and energy metabolism in rat cerebral cortex during postnatal development. J Cereb Blood Flow Metab 27:1895–1907

    PubMed  CAS  Google Scholar 

  • Cremer JR, Braun LD, Oldendorf WH (1976) Changes duringdevelopment in transport processes of the blood-brain barrier. Biochim Biophys Acta 448:633–637

    PubMed  CAS  Google Scholar 

  • Cruz F, Scott SR, Brroso I, Santisteban P, Cerdán S (1998) Ontogeny and cellular location of the pyruvate recycling system in rat brain. J Neurochem 70:2613–2619

    PubMed  CAS  Google Scholar 

  • Cruz NF, Lasater A, Zielke HR, Dienel GA (2005) Activation of astrocytes in brain of conscious rats during acoustic stimulation: acetate utilization in working brain. J Neurochem 92:934–947

    PubMed  CAS  Google Scholar 

  • D’Adamo AF Jr, Yatsu FM (1966) Acetate metabolism in the nervous system. N-acetyl-L-aspartic acid and the biosynthesis of brain lipids. J Neurochem 13:961–965

    PubMed  Google Scholar 

  • de Graaf RA, Patel AB, Rothman DL, Behar KL (2006) Acute regulation of steady-state GABA levels following GABA-transaminase inhibition in rat cerebral cortex. Neurochem Int 48:508–514

    PubMed  Google Scholar 

  • De Koning-Verest IF (1980) Glutamate metabolism in ageing rat brain. Mech Ageing Develop 13:83–92

    Google Scholar 

  • Dhopeshwarkar GA, Subramanian C, Mead JF (1971) Rapid uptake of [1-14C] acetate by the adult brain 15 seconds after carotid injection. Biochim Biophys Acta 248:41–47

    PubMed  CAS  Google Scholar 

  • Dienel GA, Popp D, Drew PD, Ball K, Krisht A, Cruz NF (2001a) Preferential labelling of glial and meningial brain tumors with [2-14C] acetate. J Nucl Med 42:1243–1250

    PubMed  CAS  Google Scholar 

  • Dienel GA, Liu K, Cruz NF (2001b) Local uptake of 14C-labeled acetate and butyrate in rat brain in vivo during spreading cortical depression. J Neurosci Res 66:812–820

    PubMed  CAS  Google Scholar 

  • Dienel GA, Cruz NF, Ball K, Popp D, Gokden M, Baron S, Wright D, Wenger GR (2003) Behavioural training increases local astrocytic metabolic activity but does not alter outcome of mild transient ischemia. Brain Res 961:201–212

    PubMed  CAS  Google Scholar 

  • Dolezal V, Tucek S (1981) Utilization of citrate, acetylcarnitine, acetate, pyruvate and glucose for the synthesis of acetylcholine in rat brain slices. J Neurochem 36:1323–1330

    PubMed  CAS  Google Scholar 

  • Eloqayli H, Dahl CB, Götestam KG, Unsgard G, Hadidi H, Sonnewald U (2001) Pentylenetetrazole decreases metabolic glutamate turnover in rat brain. J Neurochem 85:1200–1207

    Google Scholar 

  • Eloqayli H, Dahl CB, Götestam KG, Unsgard G, Sonnewald U (2004) Changes of glial-neuronal interaction and metabolism after a subconvolsive dose of pentylenetetrazole. Neurochem Int 45:739–745

    PubMed  CAS  Google Scholar 

  • Eyjolfsson EM, Brenner E, Kondziella D, Sonnewald U (2006) Repeated injection of MK801: an animal model of schizophrenia. Neurochem Int 48:540–546

    Google Scholar 

  • Freeman JM, Kossoff EH, Hartman AL (2007) The ketogenic diet: one decade later. Pediatrics 119:535–543

    PubMed  Google Scholar 

  • Garcia-Espinosa MA, Garcia-Martin ML, Cerdán S (2003) Role of glial metabolism in diabetic encephalopathy as detected by high resolution 13C NMR. NMR Biomed 16:440–449

    PubMed  CAS  Google Scholar 

  • Gonda O, Quastel JH (1966) Transport and metabolism of acetate in rat brain cortex in vitro. Biochem J 100:83–94

    PubMed  CAS  Google Scholar 

  • Haberg A, Qu H, Bakken IJ, Sande LM, White LR, Haraldseth O, Unsgard G, Aasly J, Sonnewald U (1998a) In vitro and ex vivo 13C-NMR spectroscopy studies of pyruvate recycling in brain. Dev Neurosci 20:389–398

    PubMed  CAS  Google Scholar 

  • Haberg A, Qu H, Haraldseth O, Unsgard G, Sonnewald U (1998b) In vivo injection of [1-13C] glucose and [1,2-13C] acetate combined with ex vivo 13C nuclear magnetic resonance spectroscopy: A novel approach to the study of middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 18:1223–1232

    PubMed  CAS  Google Scholar 

  • Haberg A, Qu H, Haraldseth O, Unsgard G, Sonnewald U (2000) In vivo effects on adenosine A1 receptor agonist and antagonist on neuronal and astrocytic intermediary metabolism studied with ex vivo 13C NMR spectroscopy. J Neurochem 74:327–333

    PubMed  CAS  Google Scholar 

  • Haberg A, Qu H, Saether O, Unsgard G, Haraldseth O, Sonnewald U (2001) Differences in neurotransmitter synthesis and intermediary metabolism between glutamatergic and GABAergic neurons during 4 hours of middle cerebral artery occlusion in the rat: The role of astrocytes in neuronal survival. J Cereb Blood Flow Metab 21:1451–1463

    PubMed  CAS  Google Scholar 

  • Haberg A, Qu H, Sonnewald U (2006) Glutamate and GABA metabolism in transient and permanent middle cerebral artery occlusion in rat: importance of astrocytes for neuronal sutvival. Neurochem Int 48:531–540

    PubMed  CAS  Google Scholar 

  • Haberg A, Qu H, Hjelstuen MH, Sonnewald U (2007) Effect of the pyrrolopyrimidine lipid peroxidation inhibitor U-101033E on neuronal and astrocytic metabolism and infarct volume in rats with transient middle cerebral artery occlusion. Neurochem Int 50:932–940

    PubMed  CAS  Google Scholar 

  • Hammer J, Qu H, Haberg A, Sonnewald U (2001) In vivo effects of adenosine A2 receptor agonist and antagonist on neuronal and astrocytic intermediary metabolism studied with ex vivo 13C MR spectroscopy. J Neurochem 79:885–892

    PubMed  CAS  Google Scholar 

  • Hassel B, Sonnewald U (1995) Glial formation of pyruvate and lactate from TCA cycle intermediates: implications for the inactivation of transmitter amino acids? J Neurochem 65:2227–2234

    PubMed  CAS  Google Scholar 

  • Hassel B, Sonnewald U, Unsgard G, Fonnum F (1994) NMR spectroscopy of cultured astrocytes: effects of glutamine and the gliotoxin fluorocitrate. J Neurochem 62:2187–2194

    PubMed  CAS  Google Scholar 

  • Hassel B, Bachelard H, Jones P, Fonnum F, Sonnewald U (1997) Trafficking of amino acids between neurons and glia in vivo. Effects of inhibition of glial metabolism by fluoroacetate. J Cereb Blood Flow Metab 17:1230–1238

    PubMed  CAS  Google Scholar 

  • Hirose S, Momosaki S, Hosoi R, Abe K, Gee A, Inoue O (2009) Role of NMDA receptor upon [14C] acetate uptake into intact brain. Ann Nucl Med 23:143–147

    PubMed  CAS  Google Scholar 

  • Hosoi R, Okada M, Hatazawa J, Gee A, Inoue O (2004) Effect of astrocytic energy metabolism depressant on 14C-acetate uptake in intact rat brain. J Cereb Blood Flow Metab 24:188–190

    PubMed  CAS  Google Scholar 

  • Hosoi R, Kashiwagi Y, Tokumura M, Abe K, Hatazawa J, Inoue O (2007) Sensitive reduction in 14C-acetate uptake in a short-term ischemic rat brain. J Stroke Cerebrovasc Dis 16:77–81

    PubMed  Google Scholar 

  • Hosoi R, Matsuyama Y, Hirose S-I, Koyama Y, Matsuda T, Gee A, Inoue O (2009) Characterization of 14C-acetate uptake in cultured rat astrocytes. Brain Res 1253:69–79

    PubMed  CAS  Google Scholar 

  • Inoue O, Hosoi R, Momosaki S, Yamamoto K, Amitani M, Yamaguchi M, Gee A (2006) Evaluation of [14C] phenylacetate as a prototype tracer for the measurement of glial metabolism in the rat brain. Nucl Med Biol 33:985–989

    PubMed  CAS  Google Scholar 

  • Johannessen CU, Petersen D, Fonnum F, Hassel B (2002) The acute effect of valproate on cerebral energy metabolism in mice. Epilepsy Res 47:147–256

    Google Scholar 

  • Kondziella D, Qu H, Lüdemann W, Brinker T, Sletvold O, Sonnewald U (2003) Astrocyte metabolism is disturbed in the early development of experimental hydrocephalus. J Neurochem 85:274–281

    PubMed  CAS  Google Scholar 

  • Kondziella D, Brenner E, Eyjolfsson EM, Markinhuhta KR, Carlsson ML, Sonnewald U (2006) Glial-neuronal interactions are impaired in the schizophrenia model of repeated MK801 exposure. Neuropsychopharmacology 31:1880–1887

    PubMed  CAS  Google Scholar 

  • Kreis R, Hofmann L, Kuhlmann B, Boesch C, Bossi E, Hüppi PS (2002) Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 48:949–958

    PubMed  CAS  Google Scholar 

  • Künnecke B (1995) Application of 13C NMR spectroscopy to metabolic studies on animals. In: Beckmann N (ed) Carbon-13 NMR spectroscopy of biological systems. Academic, San Diego, pp 159–267

    Google Scholar 

  • Künnecke B, Cerdan S (1989) Multilabeled 13C substrates as probes in in vivo 13C and 1H NMR spectroscopy. NMR Biomed 2:274–277

    PubMed  Google Scholar 

  • Künnecke B, Cerdan S, Seelig J (1993) Cerebral metabolism of [1,2-13C2] glucose and [U-13C4] 3-hydroxybutyrate in rat brain as detected by 13C NMR spectroscopy. NMR Biomed 6:264–277

    PubMed  Google Scholar 

  • Lajhta A, Berl S, Waelsch H (1959) Amino acids and protein metabolism of the brain. IV. The metabolism of glutamic acid. J Neurochem 3:322–332

    Google Scholar 

  • Laptook AR, Peterson J, Porter AM (1988) Effects of lactic acid infusions and pH on cerebral blood flow and metabolism. J Cereb Blood Flow Metab 8:193–200

    PubMed  CAS  Google Scholar 

  • Lear JL, Ackermann RF (1990) Evaluation of radiolabeled acetate and fluoroacetate as potential tracers of cerebral oxidative metabolism. Metab Brain Dis 5:45–56

    PubMed  CAS  Google Scholar 

  • Lebon V, Petersen KF, Cline GW, Shen J, Mason GF, Dufour S, Behar KL, Shulman GI, Rothman DL (2002) Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate rpletion and measurement of astrocytic oxidative metabolism. J Neurosci 22:1523–1531

    PubMed  CAS  Google Scholar 

  • Li S, Chen Z, Zhang Y, Lizak M, Bacher J, Innis RB, Shen J (2005) In vivo single-shot, proton-localized 13C MRS of rhesus monkey brain. NMR Biomed 18:560–569

    PubMed  CAS  Google Scholar 

  • Liu R-S, Chang C-P, Chu L-S, Chu Y-K, Hsieh H-J, Chang C-W, Yang B-H, Yen S-H, Huamg M-C, Liao S-Q, Yeh S-H (2006) PET imaging of brain astrocytoma with 1-11C-acetate. Eur J Nucl Med Mol Imag 33:420–424

    Google Scholar 

  • Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthase: glial localization in brain. Science 195:1356–1357

    PubMed  CAS  Google Scholar 

  • Mason GF, Petersen KF, Lebon V, Rothman DL, Shulman GI (2006) Increased brain monocarboxylic acid transport and utilization in type 1 diabetes. Diabetes 55:929–934

    PubMed  CAS  Google Scholar 

  • Melo TM, Nehling A, Sonnewald U (2005) Metabolism is normal in astrocytes in chronically epileptic rats: a 13C NMR study of neuronal-glial interactions in a model of temporal lobe epilepsy. J Cereb Blood Flow Metab 25:1254–1264

    PubMed  Google Scholar 

  • Melo TM, Nehling A, Sonnewald U (2006a) Neuronal-glial interactions in rats fed a ketogenic diet. Neurochem Int 48:498–507

    PubMed  CAS  Google Scholar 

  • Melo TM, Sonnewald U, Touret M, Nehling A (2006b) Cortical glutamate metabolism is enhanced in a genetic model of absence epilepsy. J Cereb Blood Flow Metab 26:1496–1506

    PubMed  Google Scholar 

  • Melo TM, Sonnewald U, Bastholm IA, Nehling A (2007) Astrocytes may play a role in the etiology of absence epilepsy: a comparison between immature GAERS not yet expressing seizures and adults. Neurobiol Dis 28:227–235

    PubMed  Google Scholar 

  • Momosaki S, Hosoi R, Sanuki T, Todoroki K, Yamaguchi M, Gee A, Inoue O (2007) [14C] Benzyl acetate is a potential radiotracer for the measurement of glial metabolism in the rat brain. Nucl Med Biol 34:939–944

    PubMed  CAS  Google Scholar 

  • Muir D, Berl S, Clarke DD (1986) Acetate and fluoroacetate as possible markers for glial metabolism in vivo. Brain Res 380:336–340

    PubMed  CAS  Google Scholar 

  • Mukherji B, Sloviter HA (1973) Metabolism of acetate and N-acetylaspartate in isolated perfused rat brain. J Neurochem 20:633–636

    PubMed  CAS  Google Scholar 

  • Müller B, Qu H, Garseth M, White LR, Aasly J, Sonnewald U (2000) Amino acid neurotransmitter metabolism in neurons and glia following kainate injection in rats. Neurosci Lett 279:169–172

    PubMed  Google Scholar 

  • Nakamura R, Cheng S-C, Naruse H (1970) A study on the precursors of the acetyl moiety of acetylcholine in brain slices. Biochem J 118:443–450

    PubMed  CAS  Google Scholar 

  • Nishima M, Suzuki M, Matsushita K (2004) Trichinella spiralis: activity of the cerebral pyruvate recycling pathway of the host (mouse) in hypoglycemia induced by the infection. Exp Parasitol 106:62–65

    Google Scholar 

  • Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes in brain. Brain Res 161:303–310

    PubMed  CAS  Google Scholar 

  • O’Neal RM, Koeppe RE, Williams EI (1966) Utilization in vivo of glucose and volatile fatty acids by sheep brain for the synthesis of acidic amino acids. Biochem J 101:591–597

    PubMed  Google Scholar 

  • Olstad E, Olsen GM, Sonnewald U (2007) Pyruvate recycling in cultured neurons from cerebellum. J Neurosci Res 85:3318–3325

    PubMed  CAS  Google Scholar 

  • Pascual JM, Carceller F, Roda JM, Cerdán S (1998) Glutamate, glutamine, and GABA as ­substrates for the neuronal and glial compartments after focal cerebral ischemia in rats. Stroke 29: 1048–1057

    PubMed  CAS  Google Scholar 

  • Patel AB, de Graaf RA, Mason GF, Rothman DL, Shulman RG, Behar KL (2005) The contribution of GABA to the glutamate/glutamine cycle and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci USA 102:5588–5593

    PubMed  CAS  Google Scholar 

  • Pierre K, Pellerin L (2005) Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 94:1–14

    PubMed  CAS  Google Scholar 

  • Pierre K, Pellerin L, Debernardi R, Riederer BM, Magistretti PJ (2000) Cell-specific lacalization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy. Neuroscience 100:617–627

    PubMed  CAS  Google Scholar 

  • Rae C, Hare N, Bubb WA, McEwan SR, Bröer A, McQuillan JA, Balcar VJ, Conigrave AD, Böer S (2003) Inhibition of glutamine transport depletes glutamate and GABA neurotransmitter pools: further evidence for metabolic compartmentation. J Neurochem 85:503–514

    PubMed  CAS  Google Scholar 

  • Rodrigues TB, Granado N, Ortiz O, Cerdán S, Moratella R (2007) Metabolic interaction between glutamatergic and dopaminergic neurotransmitter systems are mediated through D1 dopamine receptors. J Neurosci Res 85:3284–3293

    PubMed  CAS  Google Scholar 

  • Ross B, Lin A, Harris K, Bhattacharya P, Schweinsburg B (2003) Clinical experience with 13C MRS in vivo. NMR Biomed 16:358–369

    PubMed  CAS  Google Scholar 

  • Schousboe A (2003) Role of astrocytes in the maintenance and modulation of glutamatergic and GABAergic neurotransmission. Neurochem Res 28:347–352

    PubMed  CAS  Google Scholar 

  • Serres S, Bezancon E, Franconi J-M, Merle M (2007) Brain pyruvate recycling and peripheral metabolism: an NMR analysis ex vivo of acetate and glucose metabolism in the rat. J Neurochem 101:1428–1440

    PubMed  CAS  Google Scholar 

  • Serres S, Raffard G, Franconi J-M, Merle M (2008) Close coupling between astrocytic and neuronal metabolism to fulfill anaplerotic and energy needs in the rat brain. J Cereb Blood Flow Metab 28:712–724

    PubMed  CAS  Google Scholar 

  • Shank RP, Bennett GS, Freytag SO, Campbell GL (1985) Pyruvate carboxylase: astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329:364–367

    PubMed  CAS  Google Scholar 

  • Shen J, Petersen KF, Behar KL, Brown P, Nixon TW, Mason GF, Petroff OA, Shulman GI, Shulman RG, Rothman DL (1999) Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc Natl Acad Sci USA 97:8235–8240

    Google Scholar 

  • Shic F, Ross BD (2003) Automated data processing of 1H-decoupled 13C MR spectra acquired from human brain in vivo. J Magn Reson 162:259–268

    PubMed  CAS  Google Scholar 

  • Sollenberg J, Sörbo B (1970) On the origin of the acetyl moiety of acetylcholine in brain studied with differential labelling technique using 3H-14C-mixed labelled glucose and acetate. J Neurochem 17:201–207

    PubMed  CAS  Google Scholar 

  • Sonnewald U, Westergaard N, Schousboe A, Svendsen JS, Unsgard G, Petersen SB (1993) Direct demonstration by [13C]NMR spectroscopy that glutamine from astrocytes is a precursor for GABA synthesis in neurons. Neurochem Int 22:19–29

    PubMed  CAS  Google Scholar 

  • Sonnewald U, Müller TB, Westergaard N, Unsgard G, Petersen SB, Schousboe A (1994) NMR spectroscopic study of cell cultures of astrocytes and neurons exposed to hypoxia: compartmentation of astrocyte metabolism. Neurochem Int 24:473–483

    PubMed  CAS  Google Scholar 

  • Sonnewald U, Akiho H, Koshiya K, Iwai A (1998) Effect of orotic acid on the metabolism of cortical astrocytes during hypoxia and reoxygenation: an NMR spectroscopy study. J Neurosci Res 51:103–108

    PubMed  CAS  Google Scholar 

  • Spence AM, Mankoff DA, Muzi M (2003) Positron emission tomography imaging of brain tumors. Neuroimag Clin N Am 13:717–739

    Google Scholar 

  • Sze PY (1979) L-Glutamate decarboxylase. Adv Exp Med Biol 123:59–78

    PubMed  CAS  Google Scholar 

  • Tsuchida T, Takeuchi H, Okazawa H, Tsujikawa T, Fujibayashi Y (2008) Grading of brain glioma with 1-11C-acetate PET: comparison with 18F-FDG PET. Nucl Med Biol 35:171–176

    PubMed  CAS  Google Scholar 

  • Tucek S, Cheng S-C (1974) Provenance of the acetyl group of acetylcholine and compartmentation of acetyl-CoA and Krebs cycle intermediates in the brain in vivo. J Neurochem 22:893–914

    PubMed  CAS  Google Scholar 

  • Tyce GM, Ogg J, Owen CA Jr (1981) Metabolism of acetate to amino acids in brains of rats after complete hepatectomy. J Neurochem 36:640–650

    PubMed  CAS  Google Scholar 

  • Tyson RL, Gallagher C, Sutherland GR (2003) 13C-labelled substrates and the cerebral metabolic compartmentalization of acetate and lactate. Brain Res 992:43–52

    PubMed  CAS  Google Scholar 

  • Van den Berg CJ (1970) Compartmentation of glutamate metabolism in the developing brain: experiments with labelled glucose, acetate, phenylalanine, tyrosine and proline. J Neurochem 17:973–983

    PubMed  Google Scholar 

  • Van den Berg CJ, Garfinkel D (1971) A simulation study of brain compartments. Biochem J 123:211–218

    PubMed  Google Scholar 

  • Van den Berg CJ, Ronda G (1972) The incorporation of double-labelled acetate into glutamate and related amino acids from adult mouse brain: compartmentation of amino acid metabolism in brain. J Neurochem 27:1443–1448

    Google Scholar 

  • Van den Berg CJ, Mela P, Waelsch H (1966) On the contribution of the tricarboxylic acid cycle to the synthesis of glutamate, glutamine and aspartate in brain. Biochem Biophys Res Commun 23:479–484

    PubMed  Google Scholar 

  • Van den Berg CJ, Krzalic LJ, Mela P, Waelsch H (1969) Compartmentation of glutamate metabolism in brain: evidence for the existence of two different tricarboxylic acid cycles in brain. Biochem J 113:281–290

    PubMed  Google Scholar 

  • Waniewski RA, Martin DL (1998) Preferential utilisation of acetate by astrocytes is attributable to transprt. J Neurosci 18:5225–5233

    PubMed  CAS  Google Scholar 

  • Wyss MT, Weber B, Treyer V, Heer S, Pellerin L, Magistretti PJ, Buck A (2009) Stimulation-induced increase of astrocytic oxidative metabolism in rats and humans investigated with 1-11C-acetate. J Cereb Blood Flow Metab 29:44–56

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Nishiyama Y, Kimura N, Kameyama R, Kawi N, Hatakeyama T, Kaji M, Ohkawa M (2008) 11C-Acetate PET in the evaluation of brain glioma: comparison with 11C-methionine and 18F-FDG-PET. Mol Imag Biol 10:281–287

    CAS  Google Scholar 

  • Yang J, Li SS, Bacher J, Shen J (2007) Quantification of cortical GABA-glutamine cycling rate using in vivo magnetic resonance signal of [2-13C] GABA derived from glia-specific substrate [2-13C] acetate. Neurochem Int 50:371–378

    PubMed  CAS  Google Scholar 

  • Yoshimoto M, Waki A, Obata A, Furukawa T, Yonekura Y, Fujibayashi Y (2004) Radiolabeled choline as a proliferation marker: comparison with radiolabeled acetate. Nucl Med Biol 31:859–865

    PubMed  CAS  Google Scholar 

  • Yu ACH, Drejer J, Hertz L, Schousboe A (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 41:1484–1487

    PubMed  CAS  Google Scholar 

  • Yudkoff M, Daikhin Y, Nissim I, Horyn O, Lazarow A, Luhovyy B, Wehrli S, Nissim I (2005) Response of brain amino acid metabolism to ketosis. Neurochem Int 47:119–128

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basil Künnecke Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Künnecke, B. (2012). Cerebral Acetate Metabolism: Towards Its In Vivo Assessment. In: Choi, IY., Gruetter, R. (eds) Neural Metabolism In Vivo. Advances in Neurobiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1788-0_26

Download citation

Publish with us

Policies and ethics