Skip to main content

Cerebral Glucose Transport and Homeostasis

  • Chapter
  • First Online:
Neural Metabolism In Vivo

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 4))

Abstract

Cerebral glucose homeostasis is maintained by the equilibrium between glucose transport across the blood-brain-barrier (BBB), which occurs through facilitative carriers, and glucose consumption mainly initiated by hexokinase phosphorylation. Glucose concentrations can be quantified non invasively by nuclear magnetic resonance (NMR) spectroscopy and such measurements, through appropriate mathematical modelling, allow to determine the kinetics of glucose transport and metabolism. This chapter summarizes the insights gained into brain glucose transport from the measurement of the brain glucose concentration, particularly reviewing state of the art NMR methods for non invasive determination of glucose homeostasis and discussing the employment of mathematical models of glucose transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldridge WN, Parker VH (1960) Barbiturates and oxidative phosphorylation. Biochem J 76:47–56

    PubMed  CAS  Google Scholar 

  • Archer DP, Elphinstone MG, Pappius HM (1990) The effect of pentobarbital and isoflurane on glucose metabolism in thermally injured rat brain. J Cereb Blood Flow Metab 10:624–630

    Article  PubMed  CAS  Google Scholar 

  • Barros LF, Bittner CX, Loaiza A, Porras OH (2007) A quantitative overview of glucose dynamics in the gliovascular unit. Glia 55:1222–1237

    Article  PubMed  CAS  Google Scholar 

  • Betz AL, Gilboe DD, Drewes LR (1976) The characteristics of glucose transport across the blood brain barrier and its relation to cerebral glucose metabolism. Adv Exp Med Biol 69:133–149

    PubMed  CAS  Google Scholar 

  • Bielicki L, Krieglstein J (1976) Inhibition of glucose phosphorylation in rat brain by thiopental. Naunyn Schmiedebergs. Arch Pharmacol 293:25–29

    Article  CAS  Google Scholar 

  • Blomqvist G, Gjedde A, Gutniak M, Grill V, Widén L, Stone-Elander S, Hellstrand E (1991) Facilitated transport of glucose from blood to brain in man and the effect of moderate hypoglycemia on cerebral glucose utilization. Eur J Nucl Med 18:834–837

    Article  PubMed  CAS  Google Scholar 

  • Boyle PJ, Nagy RJ, O’Connor AM, Kempers SF, Yeo RA, Qualls C (1994) Adaptation in brain glucose uptake following recurrent hypoglycemia. Proc Natl Acad Sci USA 91:9352–9356

    Article  PubMed  CAS  Google Scholar 

  • Brooks DJ, Gibbs JS, Sharp P, Herold S, Turton DR, Luthra SK, Kohner EM, Bloom SR, Jones T (1986) Regional cerebral glucose transport in insulin-dependent diabetic patients studied using [11C]3-O-Methyl-D-Glucose and positron emission tomography. J Cereb Blood Flow Metab 6:240–244

    Article  PubMed  CAS  Google Scholar 

  • Buschiazzo PM, Terrell EB, Regen DM (1970) Sugar transport across the blood-brain barrier. Am J Physiol 219:1505–1513

    PubMed  CAS  Google Scholar 

  • Carruthers A (1990) Facilitated diffusion of glucose. Physiol Rev 70:1135–1176

    PubMed  CAS  Google Scholar 

  • Carruthers A, Helgerson AL (1991) Inhibitions of sugar transport produced by ligands binding at opposite sides of the membrane. Evidence for simultaneous occupation of the carrier by maltose and cytochalasin B. Biochemistry 30:3907–3915

    Article  PubMed  CAS  Google Scholar 

  • Chance B, Williams GR, Hollunger G (1963) Inhibition of electron and energy transfer in mitochondria. I. Effects of Amytal, thiopental, rotenone, progesterone, and methylene glycol. J Biol Chem 238:418–431

    PubMed  CAS  Google Scholar 

  • Chen W, Novotny EJ, Zhu XH, Rothman DL, Shulman RG (1993) Localized 1H NMR measurement of glucose consumption in the human brain during visual stimulation. Proc Natl Acad Sci USA 90:9896–9900

    Article  PubMed  CAS  Google Scholar 

  • Choi IY, Lee SP, Kim SG, Gruetter R (2001) In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia. J Cereb Blood Flow Metab 21:653–663

    Article  PubMed  CAS  Google Scholar 

  • Choi IY, Lei H, Gruetter R (2002) Effect of deep pentobarbital anesthesia on neurotransmitter metabolism in vivo: on the correlation of total glucose consumption with glutamatergic action. J Cereb Blood Flow Metab 22:1343–1351

    Article  PubMed  CAS  Google Scholar 

  • Crone C (1965) Facilitated transfer of glucose from blood into brain tissue. J Physiol 181:103–113

    PubMed  CAS  Google Scholar 

  • Cunningham VJ (1986) The influence of transport and metabolism on brain glucose content. Ann N Y Acad Sci 481:161–173

    Article  PubMed  CAS  Google Scholar 

  • Cunningham VJ, Hargreaves RJ, Pelling D, Moorhouse SR (1986) Regional blood-brain glucose transfer in the rat: a novel double-membrane kinetic analysis. J Cereb Blood Flow Metab 6:305–314

    Article  PubMed  CAS  Google Scholar 

  • Cuppoletti J, Segel IH (1975) Kinetic analysis of active membrane transport systems: equations for net velocity and isotope exchange. J Theor Biol 53:125–144

    Article  PubMed  CAS  Google Scholar 

  • de Graaf RA, Pan JW, Telang F, Lee JH, Brown P, Novotny EJ, Hetherington HP, Rothman DL (2001) Differentiation of glucose transport in human brain gray and white matter. J Cereb Blood Flow Metab 21:483–492

    Article  PubMed  Google Scholar 

  • Duarte JMN, Carvalho RA, Cunha RA, Gruetter R (2009a) Caffeine consumption attenuates ­neurochemical modifications in the hippocampus of streptozotocin-induced diabetic rats. J Neurochem 111:368–379

    Article  PubMed  CAS  Google Scholar 

  • Duarte JMN, Morgenthaler FD, Lei H, Poitry-Yamate C, Gruetter R (2009b) Steady-state brain glucose transport kinetics re-evaluated with a four-state conformational model. Front Neuroenergetics 1:6

    PubMed  CAS  Google Scholar 

  • Duarte JMN, Lanz B, Gruetter R (2011) Compartmentalised cerebral metabolism of [1,6-13C]glucose determined by in vivo 13C NMR spectroscopy at 14.1 T. Front Neuroenergetics 3:3

    PubMed  CAS  Google Scholar 

  • Duelli R, Maurer MH, Staudt R, Heiland S, Duembgen L, Kuschinsky W (2000) Increased cerebral glucose utilization and decreased glucose transporter Glut1 during chronic hyperglycemia in rat brain. Brain Res 858:338–347

    Article  PubMed  CAS  Google Scholar 

  • Fanelli CG, Dence CS, Markham J, Videen TO, Paramore DS, Cryer PE, Powers WJ (1998) Blood-to-brain glucose transport and cerebral glucose metabolism are not reduced in poorly controlled type 1 diabetes. Diabetes 47:1444–1450

    Article  PubMed  CAS  Google Scholar 

  • Feinendegen LE, Herzog H, Wieler H, Patton DD, Schmid A (1986) Glucose transport and utilization in the human brain: Model using carbon-11 methylglucose and positron emission tomography. J Nucl Med 27:1867–1877

    PubMed  CAS  Google Scholar 

  • Frahm J, Kruger G, Merboldt KD, Kleinschmidt A (1996) Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn Reson Med 35:143–148

    Article  PubMed  CAS  Google Scholar 

  • Gjedde A (1980) Rapid steady-state analysis of blood-brain glucose transfer in rat. Acta Physiol Scand 108:331–339

    Article  PubMed  CAS  Google Scholar 

  • Gjedde A (1981) High- and low-affinity transport of D-glucose from blood to brain. J Neurochem 36:1463–1471

    Article  PubMed  CAS  Google Scholar 

  • Gjedde A (1982) Calculation of cerebral glucose phosphorylation from brain uptake of glucose analogs in vivo: a re-examination. Brain Res 257:237–274

    PubMed  CAS  Google Scholar 

  • Gjedde A (1992) Blood-Brain Glucose Transfer. In: Bradbury M (ed) Physiology and pharmacology of the blood-brain barrier. Springer, New York, pp 65–117

    Chapter  Google Scholar 

  • Gjedde A, Christensen O (1984) Estimates of Michaelis-Menten constants for the two membranes of the brain endothelium. J Cereb Blood Flow Metab 4:241–249

    Article  PubMed  CAS  Google Scholar 

  • Gjedde A, Diemer NH (1983) Autoradiographic determination of regional brain glucose content. J Cereb Blood Flow Metab 3:303–310

    Article  PubMed  CAS  Google Scholar 

  • Gould GW, Thomas HM, Jess TJ, Bell GI (1991) Expression of human glucose transporters in Xenopus oocytes: kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms. Biochemistry 30:5139–5145

    Article  PubMed  CAS  Google Scholar 

  • Grossbard L, Schimke RT (1966) Multiple hexokinases of rat tissues. Purification and comparison of soluble forms. J Biol Chem 241:3546–3560

    PubMed  CAS  Google Scholar 

  • Gruetter R, Novotny EJ, Boulware SD, Rothman DL, Mason GF, Shulman GI, Shulman RG, Tamborlane WV (1992a) Direct measurement of brain glucose concentrations in humans by 13C NMR spectorscopy. Proc Natl Acad Sci USA 89:1109–1112

    Article  PubMed  CAS  Google Scholar 

  • Gruetter R, Rothman DL, Novotny EJ, Shulman GI, Prichard JW, Shulman RG (1992b) Detection and assignment of the glucose signal in 1H NMR spectra of the human brain. Magn Reson Med 26:183–188

    Article  Google Scholar 

  • Gruetter R, Novotny EJ, Boulware SD, Rothman DL, Mason GF, Shulman GI, Shulman RG, Tamborlane WV (1993) Non-invasive measurements of the cerebral steady-state glucose concentration and transport in humans by 13C magnetic resonance. In: Drewes L, Betz A (eds) Frontiers in cerebral vascular biology: transport and its regulation. Plenum, New York, pp 35–40

    Chapter  Google Scholar 

  • Gruetter R, Garwood M, Ugurbil K, Seaquist ER (1996a) Observation of resolved glucose signals in 1H NMR spectra of the human brain at 4 Tesla. Magn Reson Med 36:1–6

    Article  PubMed  CAS  Google Scholar 

  • Gruetter R, Novotny EJ, Boulware SD, Rothman DL, Shulman RG (1996b) 1H NMR studies of glucose transport in the human brain. J Cereb Blood Flow Metab 16:427–438

    Article  PubMed  CAS  Google Scholar 

  • Gruetter R, Ugurbil K, Seaquist ER (1998a) Steady-state cerebral glucose concentrations and transport in the human brain. J Neurochem 70:397–408

    Article  PubMed  CAS  Google Scholar 

  • Gruetter R, Seaquist E, Kim S-W, Ugurbil K (1998b) Localized in vivo 13C NMR of glutamate metabolism. Initial results at 4 Tesla. Dev Neurosci 20:380–388

    Article  PubMed  CAS  Google Scholar 

  • Gruetter R, Seaquist ER, Ugurbil K (2001) A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am J Physiol Endocrinol Metab 281: E100–E112

    PubMed  CAS  Google Scholar 

  • Gutniak M, Blomqvist G, Widen L, Stone-Elander S, Hamberger B, Grill V (1990) D-[U-11C]glucose uptake and metabolism in the brain of insulin-dependent diabetic subjects. Am J Physiol 258:E805–E812

    Google Scholar 

  • Haspel HC, Stephenson KN, Davies-Hill T, El-Barbary A, Lobo JF, Croxen RL, Mougrabi W, Koehler-Stec EM, Fenstermacher JD, Simpson IA (1999) Effects of barbiturates on facilitative glucose transporters are pharmacologically specific and isoform selective. J Membr Biol 169:45–53

    Article  PubMed  CAS  Google Scholar 

  • Hansen TD, Warner DS, Todd MM, Vust LJ (1989) The role of cerebral metabolism in determining the local cerebral blood flow effects of volatile anesthetics: evidence for persistent flow-metabolism coupling. J Cereb Blood Flow Metab 9:323–328

    Article  PubMed  CAS  Google Scholar 

  • Hetherington HP, Pan JW, Mason GF, Adams D, Vaughn MJ, Twieg DB, Pohost GM (1996) Quantitative H-1 spectroscopic imaging of human brain at 4.1 T using image segmentation. Magn Reson Med 36:21–29

    Article  PubMed  CAS  Google Scholar 

  • Holden JE, Mori K, Dienel GA, Cruz NF, Nelson T, Sokoloff L (1991) Modeling the dependence of hexose distribution volumes in brain on plasma glucose concentration: implications for estimation of the local 2-deoxyglucose lumped constant. J Cereb Blood Flow Metab 11:171–182

    Article  PubMed  CAS  Google Scholar 

  • Honkanen RA, McBath H, Kushmerick C, Callender GE, Scarlata SF, Fenstermacher JD, Haspel HC (1995) Barbiturates inhibit hexose transport in cultured mammalian cells and human erythrocytes and interact directly with purified GLUT-1. Biochemistry 34:535–544

    Article  PubMed  CAS  Google Scholar 

  • Inubushi T, Morikawa S, Kito K, Arai T (1993) 1H-detected in vivo 13C NMR spectroscopy and imaging at 2T magnetic field: efficient monitoring of 13C-labeled metabolites in the rat brain derived from 1-13C-glucose. Biochem Biophys Res Commun 191:866–872

    Article  PubMed  CAS  Google Scholar 

  • Keltner JR, Wald LL, Ledden PJ, Chen YC, Matthews RT, Küestermann EH, Baker JR, Rosen BR, Jenkins BG (1998) A localized double-quantum filter for the in vivo detection of brain glucose. Magn Reson Med 39:651–656

    Article  PubMed  CAS  Google Scholar 

  • Kreis R (1997) Quantitative localized 1H MR spectroscopy for clinical use. Prog NMR Spectroscopy 31:155–195

    Article  CAS  Google Scholar 

  • Kumagai AK, Kang YS, Boada RJ, Pardridge WM (1995) Upregulation of blood–brain barrier GLUT1 glucose transporter protein and mRNA in experimental chronic hypoglycemia. Diabetes 44:1399–1404

    Article  PubMed  CAS  Google Scholar 

  • Lee WJ, Peterson DR, Sukowski EJ, Hawkins RA (1997) Glucose transport by isolated plasma membranes of the bovine blood-brain barrier. Am J Physiol 272:C1552–C1557

    PubMed  CAS  Google Scholar 

  • Lei H, Gruetter R (2006) Effect of chronic hypoglycaemia on glucose concentration and glycogen content in rat brain: a localized 13C NMR study. J Neurochem 99:260–268

    Article  PubMed  CAS  Google Scholar 

  • Lei H, Duarte JM, Mlynarik V, Python A, Gruetter R (2010) Deep thiopental anesthesia alters steady-state glucose homeostasis but not the neurochemical profile of rat cortex. J Neurosci Res 88:413–419

    Article  PubMed  CAS  Google Scholar 

  • Leino RL, Gerhart DZ, van Bueren AM, McCall AL, Drewes LR (1997) Ultrastructural localization of GLUT 1 and GLUT 3 glucose transporters in rat brain. J Neurosci Res 49:617–626

    Article  PubMed  CAS  Google Scholar 

  • Linde R, Schmalbruch IK, Paulson OB, Madsen PL (1999) The Kety-Schmidt technique for repeated measurements of global cerebral blood flow and metabolism in the conscious rat. Acta Physiol Scand 165:395–401

    Article  PubMed  CAS  Google Scholar 

  • Lund-Andersen H (1979) Transport of glucose from blood to brain. Physiol Rev 59:305–352

    PubMed  CAS  Google Scholar 

  • Maher F, Vannucci SJ, Simpson IA (1993) Glucose transporter isoforms in brain: absence of GLUT3 from the blood-brain barrier. J Cereb Blood Flow Metab 13:342–345

    Article  PubMed  CAS  Google Scholar 

  • Mangia S, Tkác I, Gruetter R, Van de Moortele PF, Maraviglia B, Ug˘urbil K (2007) Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from 1H NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab 27:1055–1063

    Article  PubMed  CAS  Google Scholar 

  • Mason GF, Behar KL, Rothman DL, Shulman RG (1992) NMR determination of intracerebral glucose concentration and transport kinetics in rat brain. J Cereb Blood Flow Metab 12:448–455

    Article  PubMed  CAS  Google Scholar 

  • McCall AL, Fixman LB, Fleming N, Tornheim K, Chick W, Ruderman NB (1986) Chronic hypoglycemia increases brain glucose transport. Am J Physiol 251:E442–E447

    PubMed  CAS  Google Scholar 

  • Merboldt KD, Bruhn H, Hänicke W, Michaelis T, Frahm J (1992) Decrease of glucose in the human visual cortex during photic stimulation. Magn Reson Med 25:187–194

    Article  PubMed  CAS  Google Scholar 

  • Morgenthaler FD, Koski DM, Kraftsik R, Henry PG, Gruetter R (2006) Biochemical quantification of total brain glycogen concentration in rats under different glycemic states. Neurochem Int 48:616–622

    Article  PubMed  CAS  Google Scholar 

  • Mueckler M (1994) Facilitative glucose transporters. Eur J Biochem 219:713–725

    Article  PubMed  CAS  Google Scholar 

  • Nakao Y, Itoh Y, Kuang TY, Cook M, Jehle J, Sokoloff L (2001) Effects of anesthesia on functional activation of cerebral blood flow and metabolism. Proc Natl Acad Sci USA 98:7593–7598

    Article  PubMed  CAS  Google Scholar 

  • Pappenheimer JR, Setchell BP (1973) Cerebral glucose transport and oxygen consumption in sheep and rabbits. J Physiol 283:529–551

    Google Scholar 

  • Pardridge WM (1983) Brain metabolism: a perspective from the blood-brain barrier. Physiol Rev 63:1481–1535

    PubMed  CAS  Google Scholar 

  • Pardridge WM, Boado RJ, Farrell CR (1990) Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. Studies with quantitative western blotting and in situ hybridization. J Biol Chem 265:18035–18040

    PubMed  CAS  Google Scholar 

  • Pelligrino DA, Segil LJ, Albrecht RF (1990) Brain glucose utilization and transport and cortical function in chronic vs. acute hypoglycemia. Am J Physiol 259:E729–E735

    PubMed  CAS  Google Scholar 

  • Pfeuffer J, Flogel U, Dreher W, Leibfritz D (1998a) Restricted diffusion and exchange of intracellular water – theoretical modelling and diffusion time dependence of h-1 nmr measurements on perfused glial cells. NMR Biomed 11:19–31

    Article  PubMed  CAS  Google Scholar 

  • Pfeuffer J, Flogel U, Leibfritz D (1998b) Monitoring of cell volume and water exchange time in perfused cells by diffusion-weighted h-1 nmr spectroscopy. NMR Biomed 11:11–18

    Article  PubMed  CAS  Google Scholar 

  • Pfeuffer J, Tkac I, Gruetter R (1998c) Diffusion weighted in vivo 1H NMR spectroscopy of brain glucose and metabolites. In: 15th annual Meeting ESMRMB, Geneva, p 36

    Google Scholar 

  • Pfeuffer J, Tkác I, Gruetter R (2000) Extracellular-intracellular distribution of glucose and lactate in the rat brain assessed noninvasively by diffusion-weighted 1H nuclear magnetic resonance spectroscopy in vivo. J Cereb Blood Flow Metab 20:736–746

    Article  PubMed  CAS  Google Scholar 

  • Poitry-Yamate C, Lei H, Gruetter R (2009) The rate-limiting step for glucose transport into the hypothalamus is across the blood-hypothalamus interface. J Neurochem 109(s1):38–45

    Article  PubMed  CAS  Google Scholar 

  • Sakabe T, Tsutsui T, Maekawa T, Ishikawa T, Takeshita H (1985) Local cerebral glucose utilization during nitrous oxide and pentobarbital anesthesia in rats. Anesthesiology 63:262–266

    Article  PubMed  CAS  Google Scholar 

  • Schimke RT, Grossbard L (1968) Studies on isozymes of hexokinase in animal tissues. Ann N Y Acad Sci 151:332–350

    Article  PubMed  CAS  Google Scholar 

  • Seaquist ER, Damberg GS, Tkac I, Gruetter R (2001) The effect of insulin on in vivo cerebral glucose concentrations and rates of glucose transport/metabolism in humans. Diabetes 50:2203–2209

    Article  PubMed  CAS  Google Scholar 

  • Seaquist ER, Tkac I, Damberg G, Thomas W, Gruetter R (2005) Brain glucose concentrations in poorly controlled diabetes mellitus as measured by high-field magnetic resonance spectroscopy. Metabolism 54:1008–1013

    Article  PubMed  CAS  Google Scholar 

  • Shockley RP, LaManna JC (1988) Determination of rat cerebral cortical blood volume changes by capillary mean transit time analysis during hypoxia, hypercapnia and hyperventilation. Brain Res 454:170–178

    Article  PubMed  CAS  Google Scholar 

  • Siesjo BK (1978) Utilisation of substrates by brain tissues. In: Brain energy metabolism. Wiley, New York, pp 101–130

    Google Scholar 

  • Silver IA, Erecinska M (1994) Extracellular glucose concentration in mammalian brain: Continues monitoring of changes during increased neuronal activity and upon limitation in oxygen supply during normo-, hypo- and hyperglycemic animals. J Neurosci 14:5068–5076

    PubMed  CAS  Google Scholar 

  • Simpson IA, Appel NM, Hokari M, Oki J, Holman GD, Maher F, Koehler-Stec EM, Vannucci SJ, Smith QR (1999) Blood-brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited. J Neurochem 72:238–247

    Article  PubMed  CAS  Google Scholar 

  • Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27:1766–1791

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  PubMed  CAS  Google Scholar 

  • Sprengers ED, Koenderman AH, Staal GE (1983) Mitochondrial and cytosolic hexokinase from rat brain: one and the same enzyme? Biochim Biophys Acta 755:112–118

    Article  PubMed  CAS  Google Scholar 

  • Stephenson KN, Croxen RL, El-Barbary A, Fenstermacher JD, Haspel HC (2000) Inhibition of glucose transport and direct interactions with type 1 facilitative glucose transporter (GLUT-1) by etomidate, ketamine, and propofol: a comparison with barbiturates. Biochem Pharmacol 60:651–659

    Article  PubMed  CAS  Google Scholar 

  • Strang RH, Bachelard HS (1973) Rates of cerebral glucose utilization in rats anaesthetized with phenobarbitone. J Neurochem 20:987–996

    Article  PubMed  CAS  Google Scholar 

  • Ueki M, Mies G, Hossmann KA (1992) Effect of alpha-chloralose, halothane, pentobarbital and nitrous oxide anesthesia on metabolic coupling in somatosensory cortex of rat. Acta Anaesthesiol Scand 36:318–322

    Article  PubMed  CAS  Google Scholar 

  • van Zijl PC, Moonen CT, Faustino P, Pekar J, Kaplan O, Cohen JS (1991) Complete separation of intracellular and extracellular information in NMR spectra of perfused cells by diffusion-weighted spectroscopy. Proc Natl Acad Sci USA 88:3228–3232

    Article  PubMed  Google Scholar 

  • van Zijl PCM, Chesnick AS, DesPres D, Moonen CTW, Ruiz-Cabello J, Van Gelderen P (1993) In vivo proton spectroscopy and spectroscopic imaging of [1-13C]-glucose and its metabolic products. Magn Reson Med 30:544–551

    Article  PubMed  Google Scholar 

  • van Zijl PC, Davis D, Eleff SM, Moonen CT, Parker RJ, Strong JM (1997) Determination of cerebral glucose transport and metabolic kinetics by dynamic MR spectroscopy. Am J Physiol 273:E1216–E1227

    PubMed  Google Scholar 

  • Vannucci SJ, Maher F, Simpson IA (1997) Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia 21:2–21

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João M. N. Duarte Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Duarte, J.M.N., Gruetter, R. (2012). Cerebral Glucose Transport and Homeostasis. In: Choi, IY., Gruetter, R. (eds) Neural Metabolism In Vivo. Advances in Neurobiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1788-0_20

Download citation

Publish with us

Policies and ethics