Skip to main content

Hardware Requirements for In Vivo Nuclear Magnetic Resonance Studies of Neural Metabolism

  • Chapter
  • First Online:
Neural Metabolism In Vivo

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 4))

  • 1579 Accesses

Abstract

Refined technological developments in the field of nuclear magnetic resonance (NMR), within the biomedical environment typically named magnetic resonance (MR), enable to noninvasively obtain biochemical, physiological, morphological, and anatomical information in vivo in both clinical and preclinical studies. Currently MR technologies are available for measuring high resolution anatomical images via e.g., T1- and T2-weighted magnetic resonance imaging (MRI), microscopic alterations of brain tissue via diffusion tensor imaging (DTI), cerebral blood flow via arterial spin labeling MRI, brain function via the blood oxygen level dependent (BOLD)- MRI, and spatial distribution of neurochemicals via magnetic resonance spectroscopy (MRS), to name a few examples. Furthermore, recent technical advances allow us to combine both NMR and positron emission tomography (PET) technologies, which provide simultaneous acquisition of high resolution anatomical MRI and molecular imaging with radioactive tracers within the magnet, therefore increasing diagnostic values through combining the strength of spatial resolution of MRI and detection sensitivity of PET.

This chapter provides an overview of various configurations and components of MR systems including magnets and gradients. Particular focuses have been employed in explaining the radiofrequency (RF) system, one of the most rapidly develop technologies, from the basic to the state-of-the-art components with various modes of RF system configurations and RF coils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abragam A (1961) The principles of nuclear magnetism. Clarendon, Oxford

    Google Scholar 

  • Adriany G, Auerbach EJ et al (2010) A 32-channel lattice transmission line array for parallel transmit and receive MRI at 7 Tesla. Magnetic Resonance Med 63(6):1478–1485

    Article  Google Scholar 

  • Adriany G, De Moortele PFV et al (2008) A geometrically adjustable 16-channel transmit/receive transmission line array for improved RF efficiency and parallel imaging performance at 7 Tesla. Magn Reson Med 59(3):590–597

    Article  PubMed  Google Scholar 

  • Adriany G, Gruetter R (1997) A half-volume coil for efficient proton decoupling in humans at 4 Tesla. J Magn Reson 125(1):178–184

    Article  PubMed  CAS  Google Scholar 

  • Anderson WA (1961) Electrical current shims for correcting magnetic fields. Rev Sci Instrum 32(3):241–250

    Article  Google Scholar 

  • Antoch G, Bockisch A (2009) Combined PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging 36:113–120

    Article  Google Scholar 

  • Battocletti JH, Kamal HA et al (1993) Systematic passive shimming of a permanent-magnet for P-31 NMR-spectroscopy of bone-mineral. IEEE Trans Magnetics 29(4):2139–2151

    Article  CAS  Google Scholar 

  • Belov A, Bushuev V et al (1995) Passive shimming of the superconducting magnet for MRI. IEEE Trans Appl Superconductivity 5(2):679–681

    Article  Google Scholar 

  • Bendall M (1988) Surface coil technology. In: Partain CL, Price RR, Patton JA, Kulkarni MV, James AE (eds) Magnetic resonance imaging. W.B. Saunders, Philadelphia, pp 1201–1268

    Google Scholar 

  • Bloch F (1946) The nuclear induction experiment. Phys Rev 70:460–473

    Article  CAS  Google Scholar 

  • Brideson MA, Forbes LK et al (2002) Determining complicated winding patterns for shim coils using stream functions and the target-field method. Concepts Magn Reson 14(1):9–18

    Article  Google Scholar 

  • Carlson JW (1986) Currents and fields of thin conductors in rf saddle coils. Magn Reson Med 3(5):778–790

    Article  PubMed  CAS  Google Scholar 

  • Carlson JW, Derby KA et al (1992) Design and evaluation of shielded gradient coils. Magn Reson Med 26(2):191–206

    Article  PubMed  CAS  Google Scholar 

  • Catana C, Procissi D et al (2008) Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci USA 105(10):3705–3710

    Article  PubMed  CAS  Google Scholar 

  • Chen CN, Hoult D (1989) Biomedical magnetic resonance technology. New York and Bristol

    Google Scholar 

  • Cherry SR, Louie AY et al (2008) The integration of positron emission tomography with magnetic resonance imaging. Proc IEEE 96(3):416–438

    Article  CAS  Google Scholar 

  • Choi IY, Lee SP et al (2007) Simple partial volume transceive coils for in vivo H-1 MR studies at high magnetic fields. Concepts Magn Reson Part B 31B(2):71–85

    Article  Google Scholar 

  • Crozier S, Forbes LK et al (1994) The design of transverse gradient coils of restricted length by simulated annealing. J Magn Reson Series A 107(1):126–128

    Article  Google Scholar 

  • de Zwart JA, Ledden PJ et al (2002) Design of a SENSE-optimized high-sensitivity MRI receive coil for brain imaging. Magn Reson Med 47(6):1218–1227

    Article  PubMed  Google Scholar 

  • Dorri B, Vermilyea M et al (1993) Passive shimming of MR magnets: algorithm, hardware, and results. Appl Superconductivity, IEEE Trans 3(1):254–257

    Article  Google Scholar 

  • Doty FD, Entzminger G et al (2007) Radio frequency coil technology for small-animal MRI. NMR Biomed 20(3):304–325

    Article  PubMed  Google Scholar 

  • Driesel W, Mildner T et al (2008) A microstrip helmet coil for human brain imaging at high magnetic fields. Concepts Magn Reson B 33B(2):94–108

    Article  CAS  Google Scholar 

  • Duensing GR, Brooker HR et al (1996) Maximizing signal-to-noise ratio in the presence of coil coupling. J Magn Reson B 111(3):230–235

    Article  PubMed  CAS  Google Scholar 

  • Eccles CD, Crozier S et al (1994) Practical aspects of shielded gradient-coil design for localized in-vivo NMR-spectroscopy and small-scale imaging. Magn Reson Imaging 12(4):621–630

    Article  PubMed  CAS  Google Scholar 

  • Ernst RR (1966) Nuclear magnetic double resonance with an incoherent radio-frequency field. J Chem Phys 45:3845

    Article  CAS  Google Scholar 

  • Fishbein KW, McGowan JC et al (2005) Hardware for magnetic resonance imaging. In: Filippi M, De Stefano N, Dousset V, McGowan JC (eds) MR imaging in white matter diseases of the brain and spinal cord. Berlin, Heidelberg, p13–28

    Google Scholar 

  • Forbes LK, Brideson MA et al (2005) A target-field method to design circular biplanar coils for asymmetric shim and gradient fields. IEEE Trans Magn 41(6):2134–2144

    Article  Google Scholar 

  • Forbes LK, Crozier S (2001) Asymmetric zonal shim coils for magnetic resonance applications. Med Phys 28(8):1644–1651

    Article  PubMed  CAS  Google Scholar 

  • Forbes LK, Crozier S (2002) A novel target-field method for finite-length magnetic resonance shim coils: II. Tesseral shims. J Phys D 35(9):839–849

    Article  CAS  Google Scholar 

  • Forbes LK, Crozier S (2003) A novel target-field method for magnetic resonance shim coils: III. Shielded zonal and tesseral coils. J Phys D 36(2):68–80

    Article  CAS  Google Scholar 

  • Forbes LK, Crozier S (2004) Novel target-field method for designing shielded biplanar shim and gradient coils. IEEE Trans Magn 40(4):1929–1938

    Article  Google Scholar 

  • Garwood M, Ugurbil K et al (1989) Magnetic resonance imaging with adiabatic pulses using a single surface coil for RF transmission and signal detection. Magn Reson Med 9(1):25–34

    Article  PubMed  CAS  Google Scholar 

  • Goense JBM, Ku SP et al (2008) fMRI of the temporal lobe of the awake monkey at 7 T. Neuroimage 39(3):1081–1093

    Article  PubMed  Google Scholar 

  • Golay MJE (1958) Field homogenizing coils for nuclear spin resonance instrumentation. Rev Sci Instrum 29(4):313–315

    Article  CAS  Google Scholar 

  • Griswold MA, Jakob PM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210

    Article  PubMed  Google Scholar 

  • Gruetter R (1993) Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med 29(6):804–811

    Article  PubMed  CAS  Google Scholar 

  • Gruetter R, Seaquist ER et al (1998) Localized in vivo 13C-NMR of glutamate metabolism in the human brain: initial results at 4 Tesla. Dev Neurosci 20(4–5):380–388

    Article  PubMed  CAS  Google Scholar 

  • Haacke EM, Brown RW et al (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley-Liss, New York

    Google Scholar 

  • Haase A, Odoj F et al (2000) NMR probeheads for in vivo applications. Concepts Magn Reson 12(4):361–388

    Article  CAS  Google Scholar 

  • Hardy CJ, Darrow RD et al (2004) Large field-of-view real-time MRI with a 32-channel system. Magn Reson Med 52(4):878–884

    Article  PubMed  Google Scholar 

  • Hayes CE (2007) Birdcage resonators: highly homogeneous radiofrequency coils for magnetic resonance. Encyclopedia of Magnetic Resonance, Wiley, New York

    Google Scholar 

  • Hayes CE, Hattes N et al (1991) Volume imaging with MR phased arrays. Magn Reson Med 18(2):309–319

    Article  PubMed  CAS  Google Scholar 

  • Hayes CE, Roemer PB (1990) Noise correlations in data simultaneously acquired from multiple surface coil arrays. Magn Reson Med 16(2):181–191

    Article  PubMed  CAS  Google Scholar 

  • Heerschap A, Sommers MG et al (2004) Nuclear magnetic resonance in laboratory animals. Methods Enzymol 385:41–63

    Article  PubMed  CAS  Google Scholar 

  • Hetherington HP, Avdievich NI et al (2010) RF shimming for spectroscopic localization in the human brain at 7 T. Magn Reson Med 63(1):9–19

    PubMed  Google Scholar 

  • Hicks RJ, Lau EWF (2009) PET/MRI: a different spin from under the rim. Eur J Nucl Med Mol Imaging 36:10–14

    Article  Google Scholar 

  • Hoult DI, Chen CN et al (1984) Quadrature detection in the laboratory frame. Magn Reson Med 1(3):339–353

    Article  PubMed  CAS  Google Scholar 

  • Hoult DI, Deslauriers R (1994) Accurate shim-coil design and magnet-field profiling by a power-minimization-matrix method. J Magn Reson Series A 108(1):9–20

    Article  Google Scholar 

  • Hoult DI, Foreman D et al (2008) Overcoming high-field RF problems with non-magnetic Cartesian feedback transceivers. Magn Reson Mater Phys Biol Med 21(1–2):15–29

    CAS  Google Scholar 

  • Hoult DI, Kolansky G et al (2004a) A ‘hi-fi’ Cartesian feedback spectrometer for precise quantitation and superior performance. J Magn Reson 171(1):57–63

    Article  PubMed  CAS  Google Scholar 

  • Hoult DI, Kolansky G et al (2004b) The NMR multi-transmit phased array: a Cartesian feedback approach. J Magn Reson 171(1):64–70

    Article  PubMed  CAS  Google Scholar 

  • Hoult DI, Lee D (1985) Shimming a superconducting NMR imaging magnet with steel. Rev Sci Instrum 56(1):131–135

    Article  Google Scholar 

  • Hoult DI, Richards RE (1976) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24(1):71–85

    Article  Google Scholar 

  • Jacobs RE, Cherry SR (2001) Complementary emerging techniques: high-resolution PET and MRI. Curr Opin Neurobiol 11(5):621–629

    Article  PubMed  CAS  Google Scholar 

  • Jin J (1998) Electromagnetic analysis and design in magnetic resonance imaging. CRC, New York

    Google Scholar 

  • Juchem C, Merkle H et al (2004) Region and volume dependencies in spectral line width assessed by H-1 2D MR chemical shift imaging in the monkey brain at 7 T. Magn Reson Imaging 22(10):1373–1383

    Article  PubMed  CAS  Google Scholar 

  • Kellman P, McVeigh ER (2005) Image reconstruction in SNR units: a general method for SNR measurement. Magn Reson Med 54(6):1439–1447

    Article  PubMed  Google Scholar 

  • Kumar A, Bottomley PA (2006) Optimizing the intrinsic signal-to-noise ratio of MRI strip detectors. Magn Reson Med 56(1):157–166

    Article  PubMed  Google Scholar 

  • Kuperman V (2000) Magnetic resonance imaging: physical principles and applications. Academic, San Diego

    Google Scholar 

  • Kurpad KN, Wright SM et al (2006) RF current element design for independent control of current amplitude and phase in transmit phased arrays. Concepts Magn Reson Part B 29B(2):75–83

    Article  Google Scholar 

  • Lauterbur PC (1973) Image formation by induced local interaction: examples employing nuclear magnetic resonance. Nature 242:190–191

    Article  CAS  Google Scholar 

  • Lee RF, Giaquinto RO et al (2002) Coupling and decoupling theory and its application to the MRI phased array. Magn Reson Med 48(1):203–213

    Article  PubMed  Google Scholar 

  • Logothetis NK, Guggenberger H et al (1999) Functional imaging of the monkey brain. Nat Neurosci 2(6):555–562

    Article  PubMed  CAS  Google Scholar 

  • Mansfield P, Chapman B (1986) Active magnetic screening of coils for static and time-dependent magnetic-field generation in NMR imaging. J Phys E 19(7):540–545

    Article  Google Scholar 

  • McDougall MP, Wright SM (2005) 64-channel array coil for single echo acquisition magnetic resonance imaging. Magn Reson Med 54(2):386–392

    Article  PubMed  Google Scholar 

  • Merkle H, Wei HR et al (1992) B(1)-Insensitive heteronuclear adiabatic polarization transfer for signal enhancement. J Magn Reson 99(3):480–494

    Article  CAS  Google Scholar 

  • Mispelter J, Lupu M et al (2006) NMR probeheads: for biophysical and biomedical experiments. Imperial College, London

    Google Scholar 

  • Niendorf T, Hardy CJ et al (2006) Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system. Magn Reson Med 56(1):167–176

    Article  PubMed  Google Scholar 

  • Pan JW, Avdievich N et al (2010) J-refocused coherence transfer spectroscopic imaging at 7 T in human brain. Magn Reson Med 64(5):1237–1246

    Article  PubMed  CAS  Google Scholar 

  • Pfeuffer J, Juchem C et al (2004a) High-field localized 1H NMR spectroscopy in the anesthetized and in the awake monkey. Magn Reson Imaging 22(10):1361–1372

    Article  PubMed  CAS  Google Scholar 

  • Pfeuffer J, Merkle H et al (2004b) Anatomical and functional MR imaging in the macaque monkey using a vertical large-bore 7 Tesla setup. Magn Reson Imaging 22(10):1343–1359

    Article  PubMed  Google Scholar 

  • Pichler BJ, Judenhofer MS et al (2008) Multimodal imaging approaches: PET/CT and PET/MRI. Handb Exp Pharmacol (185 Pt 1):109–132

    Google Scholar 

  • Pichler BJ, Judenhofer MS et al (2008b) PET/MRI hybrid imaging: devices and initial results. Eur Radiol 18(6):1077–1086

    Article  PubMed  Google Scholar 

  • Pruessmann KP, Weiger M et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962

    Article  PubMed  CAS  Google Scholar 

  • Requardt H, Offermann J et al (1990) Switched array coils. Magn Reson Med 13(3):385–397

    Article  PubMed  CAS  Google Scholar 

  • Reykowski A, Wright SM et al (1995) Design of matching networks for low noise preamplifiers. Magn Reson Med 33(6):848–852

    Article  PubMed  CAS  Google Scholar 

  • Roemer PB, Edelstein WA et al (1990) The NMR phased array. Magn Reson Med 16(2):192–225

    Article  PubMed  CAS  Google Scholar 

  • Sauter AW, Wehrl HF et al (2010) Combined PET/MRI: one step further in multimodality imaging. Trends Mol Med 16(11):508–515

    Article  PubMed  Google Scholar 

  • Schempp WJ (1998) Magnetic resonance imaging: mathematical foundations and applications. Wiley-Liss, New York

    Google Scholar 

  • Shajan G, Hoffmann J et al (2011) Design and evaluation of an RF front-end for 9.4 T human MRI. Magn Reson Med 66(2):596–604

    Google Scholar 

  • Shen J (2001) Effect of degenerate spherical harmonics and a method for automatic shimming of oblique slices. NMR Biomed 14(3):177–183

    Article  PubMed  CAS  Google Scholar 

  • Shulman RG, Rothman DL (eds) (2004) Brain energetics and neuronal activity: applications to fMRI and medicine. Wiley, West Sussex

    Google Scholar 

  • Silva AC (2005) Perfusion-based fMRI: insights from animal models. J Magn Reson Imaging 22(6):745–750

    Article  PubMed  Google Scholar 

  • Silva AC, Merkle H (2003) Hardware considerations for functional magnetic resonance imaging. Concepts Magn Reson Part A 16A(1):35–49

    Article  Google Scholar 

  • Slichter CP (1996) Principles of magnetic resonance. Springer, Berlin/New York

    Google Scholar 

  • Smith RC, Lange RC (1998) Understanding magnetic resonance imaging. CRC, New York

    Google Scholar 

  • Talagala SL, Ye FQ et al (2004) Whole-brain 3D perfusion MRI at 3.0 T using CASL with a separate labeling coil. Magn Reson Med 52(1):131–140

    Article  PubMed  Google Scholar 

  • Turner R (1986) A target field approach to optimal coil design. J Phys D 19(8):L147–L151

    Article  Google Scholar 

  • Turner R (1988) Minimum inductance coils. J Phys E 21(10):948–952

    Article  Google Scholar 

  • Turner R (1993) Gradient coil design: a review of methods. Magn Reson Imaging 11(7):903–920

    Article  PubMed  CAS  Google Scholar 

  • Ugurbil K, Adriany G et al (2000) Magnetic resonance studies of brain function and neurochemistry. Annu Rev Biomed Eng 2:633–660

    Article  PubMed  CAS  Google Scholar 

  • Vermilyea ME (1988) Method of passively shimming magnetic resonance magnets, Google Patents

    Google Scholar 

  • Wehrl HF, Judenhofer MS et al (2011) Assessment of MR compatibility of a PET insert developed for simultaneous multiparametric PET/MR imaging on an animal system operating at 7 T. Magn Reson Med 65(1):269–279

    Article  PubMed  Google Scholar 

  • Wehrl HF, Sauter AW et al (2010) Combined PET/MR imaging - technology and applications. Technol Cancer Res Treat 9(1):5–20

    PubMed  CAS  Google Scholar 

  • Wehrli FW, Shaw D et al (1988) Biomedical magnetic resonance imaging: principles methodology and applications. VCH, New York

    Google Scholar 

  • Wiesinger F, Boesiger P et al (2004) Electrodynamics and ultimate SNR in parallel MR imaging. Magn Reson Med 52(2):376–390

    Article  PubMed  Google Scholar 

  • Wiggins GC, Polimeni JR et al (2009) 96-Channel receive-only head coil for 3 Tesla: design optimization and evaluation. Magn Reson Med 62(3):754–762

    Article  PubMed  Google Scholar 

  • Wiggins GC, Triantafyllou C et al (2006) 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry. Magn Reson Med 56(1):216–223

    Article  PubMed  CAS  Google Scholar 

  • Wright SM (1990) RF coil arrays for magnetic resonance imaging. Engineering in Medicine and Biology Society, 1990. Proceedings of the Twelfth Annual International Conference of the IEEE, Philadelphia

    Google Scholar 

  • Wright SM, Wald LL (1997) Theory and application of array coils in MR spectroscopy. NMR Biomed 10(8):394–410

    Article  PubMed  CAS  Google Scholar 

  • Yang QX, Li SH et al (1994) A method for evaluating the magnetic-field homogeneity of a radiofrequency coil by its field histogram. J Magn Reson Series A 108(1):1–8

    Article  Google Scholar 

  • Zaharchuk G, Ledden PJ et al (1999) Multislice perfusion and perfusion territory imaging in humans with separate label and image coils. Magn Reson Med 41(6):1093–1098

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Williams DS et al (1992) Measurement of brain perfusion by volume-localized NMR spectroscopy using inversion of arterial water spins: accounting for transit time and cross-relaxation. Magn Reson Med 25(2):362–371

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Hardy CJ et al (2004) Highly parallel volumetric imaging with a 32-element RF coil array. Magn Reson Med 52(4):869–877

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the intramural program of the Laboratory for Functional and Molecular Imaging (LFMI), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA. We gratefully acknowledge Mark Augath, Max-Planck Institute for Biological Cybernetics, Tuebingen, Germany, for images of Figs. 2.15 and 2.16; Charles Zhu, Neuro Imaging Facility, NINDS, National Eye Institute, National Institute for Mental Health, NIH, for images of Fig. 2.20; Dr. Afonso Silva, Micro Circulation Unit, LFMI, NINDS, NIH, for images of Fig. 2.21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hellmut Merkle Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Merkle, H., Lee, P., Choi, IY. (2012). Hardware Requirements for In Vivo Nuclear Magnetic Resonance Studies of Neural Metabolism. In: Choi, IY., Gruetter, R. (eds) Neural Metabolism In Vivo. Advances in Neurobiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1788-0_2

Download citation

Publish with us

Policies and ethics