Advertisement

Hardware Requirements for In Vivo Nuclear Magnetic Resonance Studies of Neural Metabolism

  • Hellmut Merkle
  • Phil Lee
  • In-Young Choi
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 4)

Abstract

Refined technological developments in the field of nuclear magnetic resonance (NMR), within the biomedical environment typically named magnetic resonance (MR), enable to noninvasively obtain biochemical, physiological, morphological, and anatomical information in vivo in both clinical and preclinical studies. Currently MR technologies are available for measuring high resolution anatomical images via e.g., T1- and T2-weighted magnetic resonance imaging (MRI), microscopic alterations of brain tissue via diffusion tensor imaging (DTI), cerebral blood flow via arterial spin labeling MRI, brain function via the blood oxygen level dependent (BOLD)- MRI, and spatial distribution of neurochemicals via magnetic resonance spectroscopy (MRS), to name a few examples. Furthermore, recent technical advances allow us to combine both NMR and positron emission tomography (PET) technologies, which provide simultaneous acquisition of high resolution anatomical MRI and molecular imaging with radioactive tracers within the magnet, therefore increasing diagnostic values through combining the strength of spatial resolution of MRI and detection sensitivity of PET.

This chapter provides an overview of various configurations and components of MR systems including magnets and gradients. Particular focuses have been employed in explaining the radiofrequency (RF) system, one of the most rapidly develop technologies, from the basic to the state-of-the-art components with various modes of RF system configurations and RF coils.

Keywords

Gradients Magnetic resonance imaging Magnetic resonance spectroscopy Magnetic resonance system Phased array elements Radio frequency coil Shims 

Notes

Acknowledgements

This work was supported by the intramural program of the Laboratory for Functional and Molecular Imaging (LFMI), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA. We gratefully acknowledge Mark Augath, Max-Planck Institute for Biological Cybernetics, Tuebingen, Germany, for images of Figs. 2.15 and 2.16; Charles Zhu, Neuro Imaging Facility, NINDS, National Eye Institute, National Institute for Mental Health, NIH, for images of Fig. 2.20; Dr. Afonso Silva, Micro Circulation Unit, LFMI, NINDS, NIH, for images of Fig. 2.21.

References

  1. Abragam A (1961) The principles of nuclear magnetism. Clarendon, OxfordGoogle Scholar
  2. Adriany G, Auerbach EJ et al (2010) A 32-channel lattice transmission line array for parallel transmit and receive MRI at 7 Tesla. Magnetic Resonance Med 63(6):1478–1485CrossRefGoogle Scholar
  3. Adriany G, De Moortele PFV et al (2008) A geometrically adjustable 16-channel transmit/receive transmission line array for improved RF efficiency and parallel imaging performance at 7 Tesla. Magn Reson Med 59(3):590–597PubMedCrossRefGoogle Scholar
  4. Adriany G, Gruetter R (1997) A half-volume coil for efficient proton decoupling in humans at 4 Tesla. J Magn Reson 125(1):178–184PubMedCrossRefGoogle Scholar
  5. Anderson WA (1961) Electrical current shims for correcting magnetic fields. Rev Sci Instrum 32(3):241–250CrossRefGoogle Scholar
  6. Antoch G, Bockisch A (2009) Combined PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging 36:113–120CrossRefGoogle Scholar
  7. Battocletti JH, Kamal HA et al (1993) Systematic passive shimming of a permanent-magnet for P-31 NMR-spectroscopy of bone-mineral. IEEE Trans Magnetics 29(4):2139–2151CrossRefGoogle Scholar
  8. Belov A, Bushuev V et al (1995) Passive shimming of the superconducting magnet for MRI. IEEE Trans Appl Superconductivity 5(2):679–681CrossRefGoogle Scholar
  9. Bendall M (1988) Surface coil technology. In: Partain CL, Price RR, Patton JA, Kulkarni MV, James AE (eds) Magnetic resonance imaging. W.B. Saunders, Philadelphia, pp 1201–1268Google Scholar
  10. Bloch F (1946) The nuclear induction experiment. Phys Rev 70:460–473CrossRefGoogle Scholar
  11. Brideson MA, Forbes LK et al (2002) Determining complicated winding patterns for shim coils using stream functions and the target-field method. Concepts Magn Reson 14(1):9–18CrossRefGoogle Scholar
  12. Carlson JW (1986) Currents and fields of thin conductors in rf saddle coils. Magn Reson Med 3(5):778–790PubMedCrossRefGoogle Scholar
  13. Carlson JW, Derby KA et al (1992) Design and evaluation of shielded gradient coils. Magn Reson Med 26(2):191–206PubMedCrossRefGoogle Scholar
  14. Catana C, Procissi D et al (2008) Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci USA 105(10):3705–3710PubMedCrossRefGoogle Scholar
  15. Chen CN, Hoult D (1989) Biomedical magnetic resonance technology. New York and BristolGoogle Scholar
  16. Cherry SR, Louie AY et al (2008) The integration of positron emission tomography with magnetic resonance imaging. Proc IEEE 96(3):416–438CrossRefGoogle Scholar
  17. Choi IY, Lee SP et al (2007) Simple partial volume transceive coils for in vivo H-1 MR studies at high magnetic fields. Concepts Magn Reson Part B 31B(2):71–85CrossRefGoogle Scholar
  18. Crozier S, Forbes LK et al (1994) The design of transverse gradient coils of restricted length by simulated annealing. J Magn Reson Series A 107(1):126–128CrossRefGoogle Scholar
  19. de Zwart JA, Ledden PJ et al (2002) Design of a SENSE-optimized high-sensitivity MRI receive coil for brain imaging. Magn Reson Med 47(6):1218–1227PubMedCrossRefGoogle Scholar
  20. Dorri B, Vermilyea M et al (1993) Passive shimming of MR magnets: algorithm, hardware, and results. Appl Superconductivity, IEEE Trans 3(1):254–257CrossRefGoogle Scholar
  21. Doty FD, Entzminger G et al (2007) Radio frequency coil technology for small-animal MRI. NMR Biomed 20(3):304–325PubMedCrossRefGoogle Scholar
  22. Driesel W, Mildner T et al (2008) A microstrip helmet coil for human brain imaging at high magnetic fields. Concepts Magn Reson B 33B(2):94–108CrossRefGoogle Scholar
  23. Duensing GR, Brooker HR et al (1996) Maximizing signal-to-noise ratio in the presence of coil coupling. J Magn Reson B 111(3):230–235PubMedCrossRefGoogle Scholar
  24. Eccles CD, Crozier S et al (1994) Practical aspects of shielded gradient-coil design for localized in-vivo NMR-spectroscopy and small-scale imaging. Magn Reson Imaging 12(4):621–630PubMedCrossRefGoogle Scholar
  25. Ernst RR (1966) Nuclear magnetic double resonance with an incoherent radio-frequency field. J Chem Phys 45:3845CrossRefGoogle Scholar
  26. Fishbein KW, McGowan JC et al (2005) Hardware for magnetic resonance imaging. In: Filippi M, De Stefano N, Dousset V, McGowan JC (eds) MR imaging in white matter diseases of the brain and spinal cord. Berlin, Heidelberg, p13–28Google Scholar
  27. Forbes LK, Brideson MA et al (2005) A target-field method to design circular biplanar coils for asymmetric shim and gradient fields. IEEE Trans Magn 41(6):2134–2144CrossRefGoogle Scholar
  28. Forbes LK, Crozier S (2001) Asymmetric zonal shim coils for magnetic resonance applications. Med Phys 28(8):1644–1651PubMedCrossRefGoogle Scholar
  29. Forbes LK, Crozier S (2002) A novel target-field method for finite-length magnetic resonance shim coils: II. Tesseral shims. J Phys D 35(9):839–849CrossRefGoogle Scholar
  30. Forbes LK, Crozier S (2003) A novel target-field method for magnetic resonance shim coils: III. Shielded zonal and tesseral coils. J Phys D 36(2):68–80CrossRefGoogle Scholar
  31. Forbes LK, Crozier S (2004) Novel target-field method for designing shielded biplanar shim and gradient coils. IEEE Trans Magn 40(4):1929–1938CrossRefGoogle Scholar
  32. Garwood M, Ugurbil K et al (1989) Magnetic resonance imaging with adiabatic pulses using a single surface coil for RF transmission and signal detection. Magn Reson Med 9(1):25–34PubMedCrossRefGoogle Scholar
  33. Goense JBM, Ku SP et al (2008) fMRI of the temporal lobe of the awake monkey at 7 T. Neuroimage 39(3):1081–1093PubMedCrossRefGoogle Scholar
  34. Golay MJE (1958) Field homogenizing coils for nuclear spin resonance instrumentation. Rev Sci Instrum 29(4):313–315CrossRefGoogle Scholar
  35. Griswold MA, Jakob PM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210PubMedCrossRefGoogle Scholar
  36. Gruetter R (1993) Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med 29(6):804–811PubMedCrossRefGoogle Scholar
  37. Gruetter R, Seaquist ER et al (1998) Localized in vivo 13C-NMR of glutamate metabolism in the human brain: initial results at 4 Tesla. Dev Neurosci 20(4–5):380–388PubMedCrossRefGoogle Scholar
  38. Haacke EM, Brown RW et al (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley-Liss, New YorkGoogle Scholar
  39. Haase A, Odoj F et al (2000) NMR probeheads for in vivo applications. Concepts Magn Reson 12(4):361–388CrossRefGoogle Scholar
  40. Hardy CJ, Darrow RD et al (2004) Large field-of-view real-time MRI with a 32-channel system. Magn Reson Med 52(4):878–884PubMedCrossRefGoogle Scholar
  41. Hayes CE (2007) Birdcage resonators: highly homogeneous radiofrequency coils for magnetic resonance. Encyclopedia of Magnetic Resonance, Wiley, New YorkGoogle Scholar
  42. Hayes CE, Hattes N et al (1991) Volume imaging with MR phased arrays. Magn Reson Med 18(2):309–319PubMedCrossRefGoogle Scholar
  43. Hayes CE, Roemer PB (1990) Noise correlations in data simultaneously acquired from multiple surface coil arrays. Magn Reson Med 16(2):181–191PubMedCrossRefGoogle Scholar
  44. Heerschap A, Sommers MG et al (2004) Nuclear magnetic resonance in laboratory animals. Methods Enzymol 385:41–63PubMedCrossRefGoogle Scholar
  45. Hetherington HP, Avdievich NI et al (2010) RF shimming for spectroscopic localization in the human brain at 7 T. Magn Reson Med 63(1):9–19PubMedGoogle Scholar
  46. Hicks RJ, Lau EWF (2009) PET/MRI: a different spin from under the rim. Eur J Nucl Med Mol Imaging 36:10–14CrossRefGoogle Scholar
  47. Hoult DI, Chen CN et al (1984) Quadrature detection in the laboratory frame. Magn Reson Med 1(3):339–353PubMedCrossRefGoogle Scholar
  48. Hoult DI, Deslauriers R (1994) Accurate shim-coil design and magnet-field profiling by a power-minimization-matrix method. J Magn Reson Series A 108(1):9–20CrossRefGoogle Scholar
  49. Hoult DI, Foreman D et al (2008) Overcoming high-field RF problems with non-magnetic Cartesian feedback transceivers. Magn Reson Mater Phys Biol Med 21(1–2):15–29Google Scholar
  50. Hoult DI, Kolansky G et al (2004a) A ‘hi-fi’ Cartesian feedback spectrometer for precise quantitation and superior performance. J Magn Reson 171(1):57–63PubMedCrossRefGoogle Scholar
  51. Hoult DI, Kolansky G et al (2004b) The NMR multi-transmit phased array: a Cartesian feedback approach. J Magn Reson 171(1):64–70PubMedCrossRefGoogle Scholar
  52. Hoult DI, Lee D (1985) Shimming a superconducting NMR imaging magnet with steel. Rev Sci Instrum 56(1):131–135CrossRefGoogle Scholar
  53. Hoult DI, Richards RE (1976) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24(1):71–85CrossRefGoogle Scholar
  54. Jacobs RE, Cherry SR (2001) Complementary emerging techniques: high-resolution PET and MRI. Curr Opin Neurobiol 11(5):621–629PubMedCrossRefGoogle Scholar
  55. Jin J (1998) Electromagnetic analysis and design in magnetic resonance imaging. CRC, New YorkGoogle Scholar
  56. Juchem C, Merkle H et al (2004) Region and volume dependencies in spectral line width assessed by H-1 2D MR chemical shift imaging in the monkey brain at 7 T. Magn Reson Imaging 22(10):1373–1383PubMedCrossRefGoogle Scholar
  57. Kellman P, McVeigh ER (2005) Image reconstruction in SNR units: a general method for SNR measurement. Magn Reson Med 54(6):1439–1447PubMedCrossRefGoogle Scholar
  58. Kumar A, Bottomley PA (2006) Optimizing the intrinsic signal-to-noise ratio of MRI strip detectors. Magn Reson Med 56(1):157–166PubMedCrossRefGoogle Scholar
  59. Kuperman V (2000) Magnetic resonance imaging: physical principles and applications. Academic, San DiegoGoogle Scholar
  60. Kurpad KN, Wright SM et al (2006) RF current element design for independent control of current amplitude and phase in transmit phased arrays. Concepts Magn Reson Part B 29B(2):75–83CrossRefGoogle Scholar
  61. Lauterbur PC (1973) Image formation by induced local interaction: examples employing nuclear magnetic resonance. Nature 242:190–191CrossRefGoogle Scholar
  62. Lee RF, Giaquinto RO et al (2002) Coupling and decoupling theory and its application to the MRI phased array. Magn Reson Med 48(1):203–213PubMedCrossRefGoogle Scholar
  63. Logothetis NK, Guggenberger H et al (1999) Functional imaging of the monkey brain. Nat Neurosci 2(6):555–562PubMedCrossRefGoogle Scholar
  64. Mansfield P, Chapman B (1986) Active magnetic screening of coils for static and time-dependent magnetic-field generation in NMR imaging. J Phys E 19(7):540–545CrossRefGoogle Scholar
  65. McDougall MP, Wright SM (2005) 64-channel array coil for single echo acquisition magnetic resonance imaging. Magn Reson Med 54(2):386–392PubMedCrossRefGoogle Scholar
  66. Merkle H, Wei HR et al (1992) B(1)-Insensitive heteronuclear adiabatic polarization transfer for signal enhancement. J Magn Reson 99(3):480–494CrossRefGoogle Scholar
  67. Mispelter J, Lupu M et al (2006) NMR probeheads: for biophysical and biomedical experiments. Imperial College, LondonGoogle Scholar
  68. Niendorf T, Hardy CJ et al (2006) Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system. Magn Reson Med 56(1):167–176PubMedCrossRefGoogle Scholar
  69. Pan JW, Avdievich N et al (2010) J-refocused coherence transfer spectroscopic imaging at 7 T in human brain. Magn Reson Med 64(5):1237–1246PubMedCrossRefGoogle Scholar
  70. Pfeuffer J, Juchem C et al (2004a) High-field localized 1H NMR spectroscopy in the anesthetized and in the awake monkey. Magn Reson Imaging 22(10):1361–1372PubMedCrossRefGoogle Scholar
  71. Pfeuffer J, Merkle H et al (2004b) Anatomical and functional MR imaging in the macaque monkey using a vertical large-bore 7 Tesla setup. Magn Reson Imaging 22(10):1343–1359PubMedCrossRefGoogle Scholar
  72. Pichler BJ, Judenhofer MS et al (2008) Multimodal imaging approaches: PET/CT and PET/MRI. Handb Exp Pharmacol (185 Pt 1):109–132Google Scholar
  73. Pichler BJ, Judenhofer MS et al (2008b) PET/MRI hybrid imaging: devices and initial results. Eur Radiol 18(6):1077–1086PubMedCrossRefGoogle Scholar
  74. Pruessmann KP, Weiger M et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962PubMedCrossRefGoogle Scholar
  75. Requardt H, Offermann J et al (1990) Switched array coils. Magn Reson Med 13(3):385–397PubMedCrossRefGoogle Scholar
  76. Reykowski A, Wright SM et al (1995) Design of matching networks for low noise preamplifiers. Magn Reson Med 33(6):848–852PubMedCrossRefGoogle Scholar
  77. Roemer PB, Edelstein WA et al (1990) The NMR phased array. Magn Reson Med 16(2):192–225PubMedCrossRefGoogle Scholar
  78. Sauter AW, Wehrl HF et al (2010) Combined PET/MRI: one step further in multimodality imaging. Trends Mol Med 16(11):508–515PubMedCrossRefGoogle Scholar
  79. Schempp WJ (1998) Magnetic resonance imaging: mathematical foundations and applications. Wiley-Liss, New YorkGoogle Scholar
  80. Shajan G, Hoffmann J et al (2011) Design and evaluation of an RF front-end for 9.4 T human MRI. Magn Reson Med 66(2):596–604Google Scholar
  81. Shen J (2001) Effect of degenerate spherical harmonics and a method for automatic shimming of oblique slices. NMR Biomed 14(3):177–183PubMedCrossRefGoogle Scholar
  82. Shulman RG, Rothman DL (eds) (2004) Brain energetics and neuronal activity: applications to fMRI and medicine. Wiley, West SussexGoogle Scholar
  83. Silva AC (2005) Perfusion-based fMRI: insights from animal models. J Magn Reson Imaging 22(6):745–750PubMedCrossRefGoogle Scholar
  84. Silva AC, Merkle H (2003) Hardware considerations for functional magnetic resonance imaging. Concepts Magn Reson Part A 16A(1):35–49CrossRefGoogle Scholar
  85. Slichter CP (1996) Principles of magnetic resonance. Springer, Berlin/New YorkGoogle Scholar
  86. Smith RC, Lange RC (1998) Understanding magnetic resonance imaging. CRC, New YorkGoogle Scholar
  87. Talagala SL, Ye FQ et al (2004) Whole-brain 3D perfusion MRI at 3.0 T using CASL with a separate labeling coil. Magn Reson Med 52(1):131–140PubMedCrossRefGoogle Scholar
  88. Turner R (1986) A target field approach to optimal coil design. J Phys D 19(8):L147–L151CrossRefGoogle Scholar
  89. Turner R (1988) Minimum inductance coils. J Phys E 21(10):948–952CrossRefGoogle Scholar
  90. Turner R (1993) Gradient coil design: a review of methods. Magn Reson Imaging 11(7):903–920PubMedCrossRefGoogle Scholar
  91. Ugurbil K, Adriany G et al (2000) Magnetic resonance studies of brain function and neurochemistry. Annu Rev Biomed Eng 2:633–660PubMedCrossRefGoogle Scholar
  92. Vermilyea ME (1988) Method of passively shimming magnetic resonance magnets, Google PatentsGoogle Scholar
  93. Wehrl HF, Judenhofer MS et al (2011) Assessment of MR compatibility of a PET insert developed for simultaneous multiparametric PET/MR imaging on an animal system operating at 7 T. Magn Reson Med 65(1):269–279PubMedCrossRefGoogle Scholar
  94. Wehrl HF, Sauter AW et al (2010) Combined PET/MR imaging - technology and applications. Technol Cancer Res Treat 9(1):5–20PubMedGoogle Scholar
  95. Wehrli FW, Shaw D et al (1988) Biomedical magnetic resonance imaging: principles methodology and applications. VCH, New YorkGoogle Scholar
  96. Wiesinger F, Boesiger P et al (2004) Electrodynamics and ultimate SNR in parallel MR imaging. Magn Reson Med 52(2):376–390PubMedCrossRefGoogle Scholar
  97. Wiggins GC, Polimeni JR et al (2009) 96-Channel receive-only head coil for 3 Tesla: design optimization and evaluation. Magn Reson Med 62(3):754–762PubMedCrossRefGoogle Scholar
  98. Wiggins GC, Triantafyllou C et al (2006) 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry. Magn Reson Med 56(1):216–223PubMedCrossRefGoogle Scholar
  99. Wright SM (1990) RF coil arrays for magnetic resonance imaging. Engineering in Medicine and Biology Society, 1990. Proceedings of the Twelfth Annual International Conference of the IEEE, PhiladelphiaGoogle Scholar
  100. Wright SM, Wald LL (1997) Theory and application of array coils in MR spectroscopy. NMR Biomed 10(8):394–410PubMedCrossRefGoogle Scholar
  101. Yang QX, Li SH et al (1994) A method for evaluating the magnetic-field homogeneity of a radiofrequency coil by its field histogram. J Magn Reson Series A 108(1):1–8CrossRefGoogle Scholar
  102. Zaharchuk G, Ledden PJ et al (1999) Multislice perfusion and perfusion territory imaging in humans with separate label and image coils. Magn Reson Med 41(6):1093–1098PubMedCrossRefGoogle Scholar
  103. Zhang W, Williams DS et al (1992) Measurement of brain perfusion by volume-localized NMR spectroscopy using inversion of arterial water spins: accounting for transit time and cross-relaxation. Magn Reson Med 25(2):362–371PubMedCrossRefGoogle Scholar
  104. Zhu Y, Hardy CJ et al (2004) Highly parallel volumetric imaging with a 32-element RF coil array. Magn Reson Med 52(4):869–877PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Laboratory of Functional and Molecular ImagingNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUSA
  2. 2.Department of Molecular & Integrative PhysiologyHoglund Brain Imaging Center, University of Kansas Medical CenterKansas CityUSA
  3. 3.Department of Neurology, Department of Molecular and Integrative PhysiologyHoglund Brain Imaging Center, University of Kansas Medical CenterKansas CityUSA

Personalised recommendations