Skip to main content

FMRI Using Exogenous Agents and Cerebral Blood Volume Contrast

  • Chapter
  • First Online:
Neural Metabolism In Vivo

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 4))

  • 1565 Accesses

Abstract

The most robust techniques for fMRI employ gradient-echo imaging to measure task-induced changes in MRI signal resulting from endogenous or exogenous paramagnetic contrast agents within the bloodstream. In animal models, blood magnetization can be adjusted to optimal levels using injected agent, and fMRI then reflects dynamic changes in cerebral blood volume (CBV). In the absence of injected agent, blood magnetization, and signal changes are smaller, and blood oxygen level dependent (BOLD) signal reports a more complex physiology that depends upon changes in blood volume, flow, and oxygen utilization. This chapter focuses primarily upon the physics and physiology of dynamic fMRI measurements of CBV using exogenous contrast agent, both as a useful tool for fMRI applications and as a method that contributes to our understanding of BOLD signal. Other recent techniques to measure CBV using endogenous mechanisms also are described briefly, as well as the fMRI method for assessing changes in cerebral blood flow by arterial spin labeling. Together, these techniques are expanding the portfolio of useful fMRI methods beyond BOLD signal and contributing to our understanding of the physiological mechanisms underlying the BOLD phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre GK, Detre JA, Zarahn E, Alsop DC (2002) Experimental design and the relative sensitivity of BOLD and perfusion fMRI. Neuroimage 15:488–500

    PubMed  CAS  Google Scholar 

  • Alsop DC, Detre JA (1996) Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 16:1236–1249

    PubMed  CAS  Google Scholar 

  • Alsop DC, Detre JA (1998) Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. Radiology 208:410–416

    PubMed  CAS  Google Scholar 

  • Anderson IM, McKie S, Elliott R, Williams SR, Deakin JF (2008) Assessing human 5-HT function in vivo with pharmacoMRI. Neuropharmacology 55:1029–1037

    PubMed  CAS  Google Scholar 

  • Axel L (1980) Cerebral blood flow determination by rapid-sequence computed tomography: a theoretical analysis. Radiology 137:679–686

    PubMed  CAS  Google Scholar 

  • Barton JC, McDonnell SM, Adams PC, Brissot P, Powell LW, Edwards CQ, Cook JD, Kowdley KV (2000) Management of hemochromatosis, vol 1. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Belliveau JW, Rosen BR, Betteridge D, Kennedy DN, Vevea JM, Johnson KA, Cohen MS, Weisskoff RM, Rzedzian RR, Brady TJ (1990a) Functional NMR imaging of the human brain. In: Proceedings of the ninth annual meeting of the society of magnetic resonance in medicine, New York, SMRM, p 181

    Google Scholar 

  • Belliveau JW, Rosen BR, Kantor HL, Rzedzian RR, Kennedy DN, McKinstry RC, Vevea JM, Cohen MS, Pykett IL, Brady TJ (1990b) Functional cerebral imaging by susceptibility-contrast NMR. Magn Reson Med 14:538–546

    PubMed  CAS  Google Scholar 

  • Belliveau JW, Kennedy DN Jr, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719

    PubMed  CAS  Google Scholar 

  • Boas DA, Jones SR, Devor A, Huppert TJ, Dale AM (2008) A vascular anatomical network model of the spatio-temporal response to brain activation. Neuroimage 40:1116–1129

    PubMed  Google Scholar 

  • Boxerman JL, Bandettini PA, Kwong KK, Baker JR, Davis TL, Rosen BR, Weisskoff RM (1995a) The intervascular contributions to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Reson Med 34:4–10

    PubMed  CAS  Google Scholar 

  • Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM (1995b) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34:555–566

    PubMed  CAS  Google Scholar 

  • Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16:4207–4221

    PubMed  CAS  Google Scholar 

  • Bradbury MWB (1985) The blood-brain barrier: transport across the cerebral endothelium. Circ Res 57:214–222

    Google Scholar 

  • Burock MA, Buckner RL, Woldorff MG, Rosen BR, Dale AM (1998) Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport 9:3735–3739

    PubMed  CAS  Google Scholar 

  • Buxton RB, Frank LR (1997) A model for the coupling between cerebral blood flow and oxygen metabolism during neuronal stimulation. J Cereb Blood Flow Metab 17:64–72

    PubMed  CAS  Google Scholar 

  • Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR (1998a) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40:383–396

    PubMed  CAS  Google Scholar 

  • Buxton RB, Wong EC, Frank LR (1998b) Dynamics of blood flow and oxygenation changes during brain activation: the Balloon model. Magn Reson Med 39:855–864

    PubMed  CAS  Google Scholar 

  • Buxton RB, Uludag K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain activation. Neuroimage 23(Suppl 1):S220–S233

    PubMed  Google Scholar 

  • Chen JJ, Pike GB (2009a) BOLD-specific cerebral blood volume and blood flow changes during neuronal activation in humans. NMR Biomed 22:1054–1062

    PubMed  Google Scholar 

  • Chen JJ, Pike GB (2009b) Origins of the BOLD post-stimulus undershoot. Neuroimage 46: 559–568

    PubMed  Google Scholar 

  • Chen YI, Mandeville JB, Nguyen TV, Talele A, Cavagna F, Jenkins BG (2001) Improved mapping of pharmacologically induced neuronal activation using the IRON technique with Superparamagnetic Iron Blood Pool Agents. J Magn Reson Imaging 14:517–524

    PubMed  CAS  Google Scholar 

  • Chen YC, Choi JK, Andersen SL, Rosen BR, Jenkins BG (2005) Mapping dopamine D2/D3 receptor function using pharmacological magnetic resonance imaging. Psychopharmacology (Berl) 180(4):705–715

    CAS  Google Scholar 

  • Chesler DA, Kwong KK (1995) An intuitive guide to the T1 based perfusion model. Int J Imaging Syst Tech 6:171–174

    Google Scholar 

  • Coyne DW (2009) Ferumoxytol for treatment of iron deficiency anemia in patients with chronic kidney disease. Expert Opin Pharmacother 10:2563–2568

    PubMed  CAS  Google Scholar 

  • Dai W, Garcia D, de Bazelaire C, Alsop DC (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60:1488–1497

    PubMed  Google Scholar 

  • Davis TL, Kwong KK, Weisskoff RM, Rosen BR (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 95:1834–1839

    PubMed  CAS  Google Scholar 

  • Dennie J, Mandeville JB, Boxerman JL, Packard SD, Rosen BR, Weisskoff RM (1998) NMR imaging of changes in vascular mophology due to tumor angiogenesis. Magn Reson Med 40:793–799

    PubMed  CAS  Google Scholar 

  • Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion Imaging. Magn Reson Med 23:37–45

    PubMed  CAS  Google Scholar 

  • Dijkhuizen RM, Singhal AB, Mandeville JB, Wu O, Halpern EF, Finklestein SP, Rosen BR, Lo EH (2003) Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. J Neurosci 23:510–517

    PubMed  CAS  Google Scholar 

  • Donahue KM, Weisskoff RM, Chesler DA, Kwong KK, Bogdanov A Jr, Mandeville JB, Rosen BR (1996) Improving MR quantification of regional blood volume with Intravascular T1 Contrast Agents: accuracy, precision, and water exchange. Magn Reson Med 36:858–867

    PubMed  CAS  Google Scholar 

  • Donahue MJ, Lu H, Jones CK, Edden RA, Pekar JJ, van Zijl PC (2006) Theoretical and experimental investigation of the VASO contrast mechanism. Magn Reson Med 56:1261–1273

    PubMed  Google Scholar 

  • Donahue MJ, Blicher JU, Ostergaard L, Feinberg DA, MacIntosh BJ, Miller KL, Gunther M, Jezzard P (2009) Cerebral blood flow, blood volume, and oxygen metabolism dynamics in human visual and motor cortex as measured by whole-brain multi-modal magnetic resonance imaging. J Cereb Blood Flow Metab 29:1856–1866

    PubMed  CAS  Google Scholar 

  • Eklöf B, Lassen NA, Nilsson L, Norberg K, Siesjö BK (1973) Blood flow and metabolic rate for oxygen in the cerebral cortex of the rat. Acta Physiol Scand 88:587–589

    PubMed  Google Scholar 

  • Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7:181–192

    PubMed  CAS  Google Scholar 

  • Enochs WS, Harsh G, Hochberg F, Weissleder R (1999) Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. J Magn Reson Imaging 9:228–232

    PubMed  CAS  Google Scholar 

  • Fisel CR, Moore JR, Garrido L, Ackerman JL, Rosen BR, Brady TJ (1989) A general model for susceptibility-based MR contrast. In: Proceedings of the eighth annual meeting of the Society of Magnetic Resonance in Medicine, Amsterdam, p 324

    Google Scholar 

  • Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83:1140–1144

    PubMed  CAS  Google Scholar 

  • Friston KJ, Mechelli A, Turner R, Price CJ (2000) Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. Neuroimage 12:466–477

    PubMed  CAS  Google Scholar 

  • Goodkin HP, Yeh JL, Kapur J (2005) Status epilepticus increases the intracellular accumulation of GABAA receptors. J Neurosci 25:5511–5520

    PubMed  CAS  Google Scholar 

  • Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN (1986) Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324:361–364

    PubMed  CAS  Google Scholar 

  • Grubb RL, Raichle ME, Eichling JO, Ter-Pogossian MM (1974) The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 5:630–639

    PubMed  Google Scholar 

  • Hamberg LM, Boccalini P, Stranjalis G, Hunter GJ, Huang Z, Halpern E, Weisskoff RM, Moskowitz MA, Rosen BR (1996) Continuous assessment of relative cerebral blood volume in transient ischemia using steady state susceptibility-contrast MRI. Magn Reson Med 35:168–173

    PubMed  CAS  Google Scholar 

  • Harel N, Lin J, Moeller S, Ugurbil K, Yacoub E (2006) Combined imaging-histological study of cortical laminar specificity of fMRI signals. Neuroimage 29:879–887

    PubMed  Google Scholar 

  • Herscovitch P, Raichle ME, Kilbourn MR, Welch MJ (1987) Positron emission tomographic ­measurement of cerebral blood flow and permeability-surface area product of water using [15O]water and [11 C]butanol. J Cereb Blood Flow Metab 7:527–542

    PubMed  CAS  Google Scholar 

  • Hillman EM, Devor A, Bouchard MB, Dunn AK, Krauss GW, Skoch J, Bacskai BJ, Dale AM, Boas DA (2007) Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation. Neuroimage 35:89–104

    PubMed  Google Scholar 

  • Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB (1999a) Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn Reson Med 42:849–863

    PubMed  CAS  Google Scholar 

  • Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB (1999b) Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci USA 96:9403–9408

    PubMed  CAS  Google Scholar 

  • Horvath I, Sandor NT, Ruttner Z, McLaughlin AC (1994) Role of nitric oxide in regulating cerebrocortical oxygen consumption and blood flow during hypercapnia. J Cereb Blood Flow Metab 14:503–509

    PubMed  CAS  Google Scholar 

  • Jenkins BG, Sanchez-Pernaute R, Brownell AL, Chen YC, Isacson O (2004) Mapping dopamine function in primates using pharmacologic magnetic resonance imaging. J Neurosci 24:9553–9560

    PubMed  CAS  Google Scholar 

  • Jezzard P, Buxton RB (2006) The clinical potential of functional magnetic resonance imaging. J Magn Reson Imaging 23:787–793

    PubMed  Google Scholar 

  • Jin T, Kim SG (2008) Cortical layer-dependent dynamic blood oxygenation, cerebral blood flow and cerebral blood volume responses during visual stimulation. Neuroimage 43:1–9

    PubMed  Google Scholar 

  • Johnson LA, Furman CA, Zhang M, Guptaroy B, Gnegy ME (2005) Rapid delivery of the dopamine transporter to the plasmalemmal membrane upon amphetamine stimulation. Neuropharmacology 49:750–758

    PubMed  CAS  Google Scholar 

  • Kastrup A, Kruger G, Neumann-Haefelin T, Glover GH, Moseley ME (2002) Changes of cerebral blood flow, oxygenation, and oxidative metabolism during graded motor activation. Neuroimage 15:74–82

    PubMed  Google Scholar 

  • Kennan RP, Scanley BE, Gore JC (1997) Physiologic basis for BOLD MR signal changes due to hypoxia/hyperoxia: separation of blood volume and magnetic susceptibility effects. Magn Reson Med 37:953–956

    PubMed  CAS  Google Scholar 

  • Kennan RP, Scanley BE, Innis RB, Gore JC (1998) Physiological basis for BOLD MR signal changes due to neuronal stimulation: separation of blood volume and magnetic susceptibility effects. Magn Reson Med 40:840–846

    PubMed  CAS  Google Scholar 

  • Kety S (1960) Measurement of local blood flow by the exchange on an inert diffusible substance. Methods Med Res 8:228–236

    Google Scholar 

  • Kida I, Rothman DL, Hyder F (2007) Dynamics of changes in blood flow, volume, and oxygenation: implications for dynamic functional magnetic resonance imaging calibration. J Cereb Blood Flow Metab 27:690–696

    PubMed  Google Scholar 

  • Kim SG, Rostrup E, Larsson HB, Ogawa S, Paulson OB (1999) Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation. Magn Reson Med 41:1152–1161

    PubMed  CAS  Google Scholar 

  • Kong Y, Zheng Y, Johnston D, Martindale J, Jones M, Billings S, Mayhew J (2004) A model of the dynamic relationship between blood flow and volume changes during brain activation. J Cereb Blood Flow Metab 24:1382–1392

    PubMed  Google Scholar 

  • Kruger G, Glover GH (2001) Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 46:631–637

    PubMed  CAS  Google Scholar 

  • Kruger G, Kastrup A, Glover GH (2001) Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 45:595–604

    PubMed  CAS  Google Scholar 

  • Kwong K, Belliveau J, Chesler D, Goldberg I, Weisskoff R, Poncelet B, Kennedy D, Hoppel B, Cohen M, Turner R, Cheng H, Brady T, Rosen B (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci 89:5675–5679

    PubMed  CAS  Google Scholar 

  • Lee SP, Silva AC, Ugurbil K, Kim SG (1999) Diffusion-weighted spin-echo fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal changes. Magn Reson Med 42:919–928

    PubMed  CAS  Google Scholar 

  • Leite FP (2006) Detection power, temporal response, and spatial resolution of IRON fMRI in awake, behaving monkeys at 3 Tesla. Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Leite FP, Mandeville JB (2006) Characterization of event-related designs using BOLD and IRON fMRI. Neuroimage 29:901–909

    PubMed  Google Scholar 

  • Leite FP, Mandeville JB (2007) Investigating water exchange across the BBB as a mechanism for the slow time constant of blood volume. In: Proceedings of the International Society for Magnetic Resonance in Medicine, Berlin, p 3190

    Google Scholar 

  • Leite FP, Tsao D, Vanduffel W, Fize D, Sasaki Y, Wald LL, Dale AM, Kwong KK, Orban GA, Rosen BR, Tootell RB, Mandeville JB (2002) Repeated fMRI using Iron Oxide Contrast Agent in Awake, behaving macaques at 3 Tesla. Neuroimage 16:283–294

    PubMed  Google Scholar 

  • Leite FP, Vanduffel W, Rosen BR, Mandeville JB (2005) Comparing spatial resolution of IRON and BOLD in awake macaques. In: Proceedings of the International Society for Magnetic Resonance in Medicine, Miami Beach, p 303

    Google Scholar 

  • Leontiev O, Dubowitz DJ, Buxton RB (2007) CBF/CMRO2 coupling measured with calibrated BOLD fMRI: sources of bias. Neuroimage 36:1110–1122

    PubMed  Google Scholar 

  • Liu H, Rainey C, Lauer KK, Piacentine L, Bloom A, Risinger R, Ward BD, Stein E, Li SJ (2006) Peripheral blood pressure changes induced by dobutamine do not alter BOLD signals in the human brain. Neuroimage 30:745–752

    PubMed  Google Scholar 

  • Liu CH, Greve DN, Dai G, Marota JJ, Mandeville JB (2007) Remifentanil administration reveals biphasic phMRI temporal responses in rat consistent with dynamic receptor regulation. Neuroimage 34:1042–1053

    PubMed  Google Scholar 

  • Lu H, Golay X, Pekar JJ, Van Zijl PC (2003) Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med 50:263–274

    PubMed  Google Scholar 

  • Lu H, Clingman C, Golay X, van Zijl PC (2004a) Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med 52:679–682

    PubMed  Google Scholar 

  • Lu H, Golay X, Pekar JJ, Van Zijl PC (2004b) Sustained poststimulus elevation in cerebral oxygen utilization after vascular recovery. J Cereb Blood Flow Metab 24:764–770

    PubMed  Google Scholar 

  • Lu H, van Zijl PC, Hendrikse J, Golay X (2004c) Multiple acquisitions with global inversion cycling (MAGIC): a multislice technique for vascular-space-occupancy dependent fMRI. Magn Reson Med 51:9–15

    PubMed  Google Scholar 

  • Lu H, Soltysik DA, Ward BD, Hyde JS (2005) Temporal evolution of the CBV-fMRI signal to rat whisker stimulation of variable duration and intensity: a linearity analysis. Neuroimage 26: 432–440

    PubMed  Google Scholar 

  • Lyons D, Friedman DP, Nader MA, Porrino LJ (1996) Cocaine alters cerebral metabolism within the ventral striatum and limbic cortex of monkeys. J Neurosci 16:1230–1238

    PubMed  CAS  Google Scholar 

  • Mandeville JB, Marota JJA (1999) Vascular filters of functional MRI: spatial localization using BOLD and CBV contrast. Magn Reson Med 42:591–598

    PubMed  CAS  Google Scholar 

  • Mandeville JB, Marota JJA, Kosofsky BE, Keltner JR, Weissleder R, Rosen BR, Weisskoff RM (1998) Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. Magn Reson Med 39:615–624

    PubMed  CAS  Google Scholar 

  • Mandeville JB, Marota JJA, Ayata C, Moskowitz MA, Weisskoff RM, Rosen BR (1999a) An MRI measurement of the temporal evolution of relative CMRO2 during rat forepaw stimulation. Magn Reson Med 42:944–951

    PubMed  CAS  Google Scholar 

  • Mandeville JB, Marota JJA, Ayata C, Zaharchuk G, Moskowitz MA, Rosen BR, Weisskoff RM (1999b) Evidence of a cerebrovascular post-arteriole windkessel with delayed compliance. J Cereb Blood Flow Metab 19:679–689

    PubMed  CAS  Google Scholar 

  • Mandeville JB, Jenkins BG, Kosofsky BE, Moskowitz MA, Rosen BR, Marota JJA (2001) Regional Sensitivity and Coupling of BOLD and CBV Changes during Stimulation of Rat Brain. Magn Reson Med 45:443–447

    PubMed  CAS  Google Scholar 

  • Mandeville JB, Jenkins BG, Chen YC, Choi JK, Kim YR, Belen D, Liu C, Kosofsky BE, Marota JJ (2004) Exogenous contrast agent improves sensitivity of gradient-echo functional magnetic resonance imaging at 9.4 T. Magn Reson Med 52:1272–1281

    PubMed  CAS  Google Scholar 

  • Mandeville JB, Leite FP, Marota JJ (2007a) Spin-echo MRI underestimates functional changes in microvascular cerebral blood plasma volume using exogenous contrast agent. Magn Reson Med 58:769–776

    PubMed  Google Scholar 

  • Mandeville JB, Liu C, Marota JJA (2007) Spin echoes underestimate functional changes in microvascular cerebral blood volume. In: Proceedings of the International Society for Magnetic Resonance in Medicine, Berlin, p 770

    Google Scholar 

  • Marota JJA, Ayata C, Moskowitz MA, Weisskoff RM, Rosen BR, Mandeville JB (1999) Investigation of the early response to rat forepaw stimulation. Magn Reson Med 41:247–252

    PubMed  CAS  Google Scholar 

  • Marota JJA, Mandeville JB, Weisskoff RM, Moskowitz MA, Rosen BR, Kosofsky BE (2000) Cocaine activation discriminates dopamergic projections by temporal response: an fMRI study in rat. Neuroimage 11:13–23

    PubMed  CAS  Google Scholar 

  • Mazziotta JC, Phelps ME (1986) Positron emission tomography studies of the brain. Raven Press, New York

    Google Scholar 

  • Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6:731–744

    PubMed  CAS  Google Scholar 

  • Ogawa S, Lee TM (1990) Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magn Reson Med 16:9–18

    PubMed  CAS  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990a) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    PubMed  CAS  Google Scholar 

  • Ogawa S, Lee TM, Nayak AS, Glynn P (1990b) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14:68–78

    PubMed  CAS  Google Scholar 

  • Ogawa S, Lee RM, Barrere B (1993) The sensitivity of magnetic resonance image signals of a rat brain to changes in the cerebral venous blood oxygenation. Magn Reson Med 29:205–210

    PubMed  CAS  Google Scholar 

  • Oja JM, Gillen J, Kauppinen RA, Kraut M, van Zijl PC (1999) Venous blood effects in spin-echo fMRI of human brain. Magn Reson Med 42:617–626

    PubMed  CAS  Google Scholar 

  • Parkes LM, Schwarzbach JV, Bouts AA, Deckers RH, Pullens P, Kerskens CM, Norris DG (2005) Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3 Tesla. Magn Reson Med 54:1465–1472

    PubMed  Google Scholar 

  • Pauling L, Coryell CD (1936) The magnetic properties and structure of hemoglobin. Oxyhemoglobin and carbon monooxyhemoglobin. Proc Natl Acad Sci USA 22:210–216

    PubMed  CAS  Google Scholar 

  • Piechnik SK, Evans J, Bary LH, Wise RG, Jezzard P (2009) Functional changes in CSF volume estimated using measurement of water T2 relaxation. Magn Reson Med 61:579–586

    PubMed  CAS  Google Scholar 

  • Porciuncula CI, Armstrong JGG, Guyton AC, Stone HL (1964) Delayed compliance in external jugular vein of the dog. Am J Physiol 207:728–732

    PubMed  CAS  Google Scholar 

  • Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion Imaging with NMR contrast agents. Magn Reson Med 14:249–265

    PubMed  CAS  Google Scholar 

  • Rosen BR, Belliveau JW, Aronen HJ, Kennedy D, Buchbinder BR, Fischman A, Gruber M, Glas J, Weisskoff RM, Cohen MS, Hochberg FH, Brady TJ (1991) Susceptibility contrast imaging of cerebral blood volume: human experience. Magn Reson Med 22:293–299

    PubMed  CAS  Google Scholar 

  • Roy CS, Sherrington CS (1890) On the regulation of the blood-supply of the brain. J Physiol (London) 11:85–108

    CAS  Google Scholar 

  • Royl G, Leithner C, Kohl M, Lindauer U, Dirnagl U, Kwong K, Mandeville JB (2001) The BOLD post-stimulus undershoot: fMRI versus imaging spectroscopy. In: Proceedings of the International Society for Magnetic Resonance in Medicine, Glasgow, p 282

    Google Scholar 

  • Scouten A, Constable RT (2007) Applications and limitations of whole-brain MAGIC VASO functional imaging. Magn Reson Med 58:306–315

    PubMed  CAS  Google Scholar 

  • Scouten A, Constable RT (2008) VASO-based calculations of CBV change: accounting for the dynamic CSF volume. Magn Reson Med 59:308–315

    PubMed  CAS  Google Scholar 

  • Sharkey J, McBean DE, Kelly PAT (1991) Acute cocaine administration: effects on local cerebral blood flow and metabolic demand in the rat. Brain Res 548:310–314

    PubMed  CAS  Google Scholar 

  • Shen T, Weissleder R, Papisov MA, Bogdanov J, Brady TJ (1993) Monocrystalline iron oxide nanocompounds (MION): physiochemical properties. Magn Reson Med 29:599–604

    PubMed  CAS  Google Scholar 

  • Shmuel A, Yacoub E, Chaimow D, Logothetis NK, Ugurbil K (2007) Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla. Neuroimage 35:539–552

    PubMed  Google Scholar 

  • Silva AC, Zhang W, Williams DS, Koretsky AP (1995) Multi-slice MRI of rat brain perfusion during amphetamine stimulation using arterial spin labeling. Magn Reson Med 33:209–214

    PubMed  CAS  Google Scholar 

  • Silva AC, Koretsky AP, Duyn JH (2007) Functional MRI impulse response for BOLD and CBV contrast in rat somatosensory cortex. Magn Reson Med 57:1110–1118

    PubMed  Google Scholar 

  • Song AW, Wong EC, Tan SG, Hyde JS (1996) Diffusion weighted fMRI at 1.5 T. Magn Reson Med 35:155–158

    PubMed  CAS  Google Scholar 

  • Stefanovic B, Pike GB (2005) Venous refocusing for volume estimation: VERVE functional magnetic resonance imaging. Magn Reson Med 53:339–347

    PubMed  Google Scholar 

  • Stefanovic B, Warnking JM, Pike GB (2004) Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage 22:771–778

    PubMed  Google Scholar 

  • Stein EA, Fuller SA (1993) Cocaine’s time action profile on regional cerebral blood flow in the rat. Brain Res 626:117–126

    PubMed  CAS  Google Scholar 

  • Sunaert S (2006) Presurgical planning for tumor resectioning. J Magn Reson Imaging 23:887–905

    PubMed  Google Scholar 

  • Ter-Pogossian MM, Eichling JO, Davis DO, Welch MJ, Metzger JM (1969) The determination of regional cerebral blood flow by means of water labeled with radioactive oxygen 15. Radiology 93:31–40

    PubMed  CAS  Google Scholar 

  • Thulborn KR, Waterton JC, Radda GK (1981) Proton Imaging for in vivo blood flow and oxygen consumption measurements. Journal of Magn Reson 45:188–191

    CAS  Google Scholar 

  • Thulborn KR, Waterton JC, Matthews PM, Radda GK (1982) Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 714:265–270

    PubMed  CAS  Google Scholar 

  • Tootell RBH, Switkes E, Silverman MS, Hamilton SL (1988) Functional anatomy of macaque striate cortex. II. Retinotopic Organization. J Neurosci 8:1531–1568

    PubMed  CAS  Google Scholar 

  • Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL (2005) Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26:243–250

    PubMed  CAS  Google Scholar 

  • Tropres I, Gramault S, Vaeth A, Grillon E, Julien C, Payen J-F, Lamalle L, Decorps M (2001) Vessel size imaging. Magn Reson Med 45:397–408

    PubMed  CAS  Google Scholar 

  • Trugman JM, James CL (1993) D1 dopamine agonist and antagonist effects on regional cerebral glucose utilization in rats with intact dopaminergic innervation. Brain Res 607:270–274

    PubMed  CAS  Google Scholar 

  • Tsao DY, Vanduffel W, Sasaki Y, Fize D, Knutsen TA, Mandeville JB, Wald LL, Dale AM, Rosen BR, Van Essen DC, Livingstone MS, Orban GA, Tootell RB (2003) Stereopsis activates V3A and caudal intraparietal areas in macaques and humans. Neuron 39:555–568

    PubMed  CAS  Google Scholar 

  • Tsao DY, Freiwald WA, Tootell RB, Livingstone MS (2006) A cortical region consisting entirely of face-selective cells. Science 311:670–674

    PubMed  CAS  Google Scholar 

  • Uludag K, Dubowitz DJ, Yoder EJ, Restom K, Liu TT, Buxton RB (2004) Coupling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRI. Neuroimage 23:148–155

    PubMed  Google Scholar 

  • van Bruggen N, Busch E, Palmer JT, Williams SP, de Crespigny AJ (1998) High-resolution functional magnetic resonance imaging of the rat brain: mapping changes in cerebral blood volume using iron oxide contrast media. J Cereb Blood Flow Metab 18:1178–1183

    PubMed  Google Scholar 

  • van Rijnsoever C, Sidler C, Fritschy JM (2005) Internalized GABA-receptor subunits are transferred to an intracellular pool associated with the postsynaptic density. Eur J Neurosci 21:327–338

    PubMed  Google Scholar 

  • Vanduffel W, Fize D, Mandeville JB, Nelissen K, Van Hecke P, Rosen BR, Tootell RBH, Orban GA (2001) Visual motion processing investigated using contrast-enhanced fMRI in awake behaving monkeys. Neuron 32:565–577

    PubMed  CAS  Google Scholar 

  • Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Chao Y, Wedeen VJ, Brady TJ (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6:164–174

    PubMed  CAS  Google Scholar 

  • Wang J, Alsop DC, Li L, Listerud J, Gonzalez-At JB, Schnall MD, Detre JA (2002) Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 Tesla. Magn Reson Med 48:242–254

    PubMed  Google Scholar 

  • Weissleder R, Elizondo G, Wittenberg K (1990) Ultrasmall superparamagnetic iron oxide. Characterization of a new class of contrast agents for MR imaging. Radiology 175:489–493

    PubMed  CAS  Google Scholar 

  • Williams DS (2006) Quantitative perfusion imaging using arterial spin labeling. Methods Mol Med 124:151–173

    PubMed  Google Scholar 

  • Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci USA 89:212–216

    PubMed  CAS  Google Scholar 

  • Wise RG, Tracey I (2006) The role of fMRI in drug discovery. J Magn Reson Imaging 23: 862–876

    PubMed  Google Scholar 

  • Wong EC, Buxton RB, Frank LR (1998a) A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging. Magn Reson Med 40:348–355

    PubMed  CAS  Google Scholar 

  • Wong EC, Buxton RB, Frank LR (1998b) Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 39:702–708

    PubMed  CAS  Google Scholar 

  • Yacoub E, Ugurbil K, Harel N (2006) The spatial dependence of the poststimulus undershoot as revealed by high-resolution BOLD- and CBV-weighted fMRI. J Cereb Blood Flow Metab 26:634–644

    PubMed  Google Scholar 

  • Yang SP, Krasney JA (1995) Cerebral blood flow and metabolic responses to sustained hypercapnia in awake sheep. J Cereb Blood Flow Metab 15:115–123

    PubMed  CAS  Google Scholar 

  • Ye FQ, Frank JA, Weinberger DR, McLaughlin AC (2000) Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med 44:92–100

    PubMed  CAS  Google Scholar 

  • Zaharchuk G (2007) Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. AJNR Am J Neuroradiol 28:1850–1858

    PubMed  CAS  Google Scholar 

  • Zaharchuk G, Mandeville JB, Bogdonov AA Jr, Weissleder R, Rosen BR, Marota JJA (1999) Cerebrovascular dynamics of autoregulation and hypotension: an MRI study of CBF and changes in total and microvascular cerebral blood volume during hemorrhagic hypotension. Stroke 30:2197–2205

    PubMed  CAS  Google Scholar 

  • Zaharchuk G, Bammer R, Straka M, Shankaranarayan A, Alsop DC, Fischbein NJ, Atlas SW, Moseley ME (2009) Arterial spin-label imaging in patients with normal bolus perfusion-weighted MR imaging findings: pilot identification of the borderzone sign. Radiology 252:797–807

    PubMed  Google Scholar 

  • Zhao F, Wang P, Hendrich K, Ugurbil K, Kim SG (2006) Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation. Neuroimage 30:1149–1160

    PubMed  Google Scholar 

  • Zheng Y, Martindale J, Johnston D, Jones M, Berwick J, Mayhew J (2002) A model of the hemodynamic response and oxygen delivery to brain. Neuroimage 16:617–637

    PubMed  Google Scholar 

  • Zhong J, Kennan RP, Fulbright RK, Gore JC (1998) Quantification of intravascular and extravascular contributions to BOLD effects induced by alteration in oxygenation or intravascular contrast agents. Magn Reson Med 40:526–536

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Numerous people contributed to this work by collaboration; I hope their contributions are reflected adequately in the cited publications. There are some collaborators who contributed to work that has been presented in this chapter but not in journal publications, including Georg Royl, Francisca Leite, Ji-Kyung Choi, Bruce Jenkins, Roger Tootell, Wim Vanduffel, and Marge Livingstone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph B. Mandeville Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mandeville, J.B. (2012). FMRI Using Exogenous Agents and Cerebral Blood Volume Contrast. In: Choi, IY., Gruetter, R. (eds) Neural Metabolism In Vivo. Advances in Neurobiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1788-0_17

Download citation

Publish with us

Policies and ethics