Skip to main content

Neuroreceptor Imaging

  • Chapter
  • First Online:

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 4))

Abstract

Neuroreceptor imaging using PET and SPECT has contributed to clinical neuroscience and diagnosis (e.g. neurodegenerative disease and antipsychotic-drug receptor occupancy). Recent advances in dedicated PET and SPECT instrumentation, disease-specific radioligands, and image analysis techniques contributed to the further development of this field and its widespread application. In this chapter, we introduce the basis concepts of neuroreceptor imaging using typical radioligands, standard modeling and analysis techniques and discuss future research opportunities in the field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Accorsi R (2008) Brain single-photon emission CT physics principles. AJNR Am J Neuroradiol 29:1247–1256

    Article  PubMed  CAS  Google Scholar 

  • Agdeppa ED, Kepe V, Liu J, Small GW, Huang SC, Petric A, Satyamurthy N, Barrio JR (2003) 2-Dialkylamino-6-acylmalononitrile substituted naphthalenes (DDNP analogs): novel diagnostic and therapeutic tools in Alzheimer’s disease. Mol Imaging Biol 5:404–417

    Article  PubMed  Google Scholar 

  • Bentourkia M, Zaidi H (2007) Tracer kinetic modeling in PET. PET Clinics 2:267–277

    Google Scholar 

  • Blomqvist G, Pauli S, Farde L, Eriksson L, Person A, Halldin C (1989) Dynamic models for reversible ligand binding. Kluwer, Dordrecht

    Google Scholar 

  • Booij J, Tissingh G, Winogrodzka A, van Royen EA (1999) Imaging of the dopaminergic neurotransmission system using single- photon emission tomography and positron emission tomography in patients with Parkinsonism. Eur J Nucl Med 26:171–182

    Article  PubMed  CAS  Google Scholar 

  • Bosman T, Van Laere K, Santens P (2003) Anatomically standardised (99 m)Tc-ECD brain perfusion SPET allows accurate differentiation between healthy volunteers, multiple system atrophy and idiopathic Parkinson’s disease. Eur J Nucl Med Mol Imaging 30:16–24

    Article  PubMed  CAS  Google Scholar 

  • Brucke T, Kornhuber J, Angelberger P, Asenbaum S, Frassine H, Podreka I (1993) SPECT imaging of dopamine and serotonin transporters with [123I]beta-CIT. Binding kinetics in the human brain. J Neural Transm Gen Sect 94:137–146

    Article  PubMed  CAS  Google Scholar 

  • Burns HD, Dannals RF, Langstrom B, Ravert HT, Zemyan SE, Duelfer T, Wong DF, Frost JJ, Kuhar MJ, Wagner HN (1984) (3-N-[11C]methyl)spiperone, a ligand binding to dopamine receptors: radiochemical synthesis and biodistribution studies in mice. J Nucl Med 25:1222–1227

    PubMed  CAS  Google Scholar 

  • Carson RE, Channing MA, Blasberg RG, Dunn BB, Cohen RM, Rice KC, Herscovitch P (1993) Comparison of bolus and infusion methods for receptor quantitation: application to [18F]cyclofoxy and positron emission tomography. J Cereb Blood Flow Metab 13:24–42

    Article  PubMed  CAS  Google Scholar 

  • Cho ZH, Son YD, Kim HK, Kim KN, Oh SH, Han JY, Hong IK, Kim YB (2008) A fusion PET-MRI system with a high-resolution research tomograph-PET and ultra-high field 7.0 T-MRI for the molecular-genetic imaging of the brain. Proteomics 8:1302–1323

    Article  PubMed  CAS  Google Scholar 

  • Costa D, Walker Z, Walker R et al (1999) Dementia with Lewy bodies: preliminary data on clinical, pathological and FP-CIT SPECT correlations. Nucl Med Comm 20:467–468

    Google Scholar 

  • Crouzel C, Guillaume M, Barre L, Lemaire C, Pike VW (1992) Ligands and tracers for PET studies of the 5-HT system–current status. Int J Rad Appl Instrum B 19:857–870

    PubMed  CAS  Google Scholar 

  • Cunningham VJ, Hume SP, Price GR, Ahier RG, Cremer JE, Jones AK (1991) Compartmental analysis of diprenorphine binding to opiate receptors in the rat in vivo and its comparison with equilibrium data in vitro. J Cereb Blood Flow Metab 11:1–9

    Article  PubMed  CAS  Google Scholar 

  • Delforge J, Syrota A, Mazoyer BM (1989) Experimental design optimization: theory and application to estimation of receptor model parameters using dynamic positron emission tomography. Phys Med Biol 34:419–435

    Article  PubMed  CAS  Google Scholar 

  • Dresel S, Kung MP, Huang XF, Plossl K, Hou C, Meegalla SK, Patselas GP, Mu M, Saffer JR, Kung HK (1999) Simultaneous SPECT studies of pre- and postsynaptic dopamine binding sites in baboons. J Nucl Med 40:660–666

    PubMed  CAS  Google Scholar 

  • Emond P, Garreau L, Chalon S, Boazi M, Caillet M, Bricard J, Frangin Y, Mauclaire L, Besnard JC, Guilloteau D (1997) Synthesis and ligand binding of nortropane derivatives: N-substituted 2beta-carbomethoxy-3beta-(4′-iodophenyl)nortropane and N-(3-iodoprop-(2E)-enyl)-2beta-carbomethoxy-3beta-(3′,4′-disubstituted phenyl)nortropane. New high-affinity and selective compounds for the dopamine transporter. J Med Chem 40:1366–1372

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Halldin C, Stone-Elander S, Sedvall G (1987) PET analysis of human dopamine receptor subtypes using 11C-SCH 23390 and 11C-raclopride. Psychopharmacology (Berl) 92:278–284

    Article  CAS  Google Scholar 

  • Farde L, Eriksson L, Blomqvist G, Halldin C (1989) Kinetic analysis of central [11C]Raclopride binding to D2-dopamine receptors studied by PET – a comparison to the equilibrium analysis. J Cereb Blood Flow Metab 9:696–708

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Halldin C, Muller L, Suhara T, Karlsson P, Hall H (1994) PET study of [11C]beta-CIT binding to monoamine transporters in the monkey and human brain. Synapse 16:93–103

    Article  PubMed  CAS  Google Scholar 

  • Ferris CF, Febo M, Luo F, Schmidt K, Brevard M, Harder JA, Kulkarni P, Messenger T, King JA (2006) Functional magnetic resonance imaging in conscious animals: a new tool in behavioural neuroscience research. J Neuroendocrinol 18:307–318

    Article  PubMed  CAS  Google Scholar 

  • Fowler JS, Volkow ND, Wang GJ, Ding YS (2004) 2-deoxy-2-[18F]fluoro-D-glucose and alternative radiotracers for positron emission tomography imaging using the human brain as a model. Semin Nucl Med 34:112–121

    Article  PubMed  Google Scholar 

  • Furumoto S, Okamura N, Iwata R, Yanai K, Arai H, Kudo Y (2007) Recent advances in the development of amyloid imaging agents. Curr Top Med Chem 7:1773–1789

    Article  PubMed  CAS  Google Scholar 

  • Gallezot JD, Bottlaender MA, Delforge J, Valette H, Saba W, Dolle F, Coulon CM, Ottaviani MP, Hinnen F, Syrota A, Gregoire MC (2008) Quantification of cerebral nicotinic acetylcholine receptors by PET using 2-[18F]fluoro-A-85380 and the multiinjection approach. J Cereb Blood Flow Metab 28:172–180

    Article  PubMed  CAS  Google Scholar 

  • Gilman S (1998) Imaging the brain. First of two parts. N Engl J Med 338:812–820

    Article  PubMed  CAS  Google Scholar 

  • Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ (1997) Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 6:279–287

    Article  PubMed  CAS  Google Scholar 

  • Halldin C, Stone-Elander S, Farde L, Ehrin E, Fasth KJ, Langstrom B, Sedvall G (1986) Preparation of 11C-labelled SCH 23390 for the in vivo study of dopamine D-1 receptors using positron emission tomography. Int J Rad Appl Instrum A 37:1039–1043

    Article  PubMed  CAS  Google Scholar 

  • Halldin C, Foged C, Chou YH, Karlsson P, Swahn CG, Sandell J, Sedvall G, Farde L (1998) Carbon-11-NNC 112: a radioligand for PET examination of striatal and neocortical D1-dopamine receptors. J Nucl Med 39:2061–2068

    PubMed  CAS  Google Scholar 

  • Halldin C, Gulyas B, Langer O, Farde L (2001) Brain radioligands–state of the art and new trends. Q J Nucl Med 45:139–152

    PubMed  CAS  Google Scholar 

  • Hammoud DA, Hoffman JM, Pomper MG (2007) Molecular neuroimaging: from conventional to emerging techniques. Radiology 245:21–42

    Article  PubMed  Google Scholar 

  • Hartvig P, Agren H, Reibring L, Tedroff J, Bjurling P, Kihlberg T, Langstrom B (1991) Brain kinetics of L-[beta-11C]dopa in humans studied by positron emission tomography. J Neural Transm Gen Sect 86:25–41

    Article  PubMed  CAS  Google Scholar 

  • Heiss WD, Herholz K (2006) Brain receptor imaging. J Nucl Med 47:302–312

    PubMed  CAS  Google Scholar 

  • Hosaka K, Ishii K, Sakamoto S, Mori T, Sasaki M, Hirono N, Mori E (2002) Voxel-based comparison of regional cerebral glucose metabolism between PSP and corticobasal degeneration. J Neurol Sci 199:67–71

    Article  PubMed  CAS  Google Scholar 

  • Houle S, DaSilva JN, Wilson AA (2000) Imaging the 5-HT(1A) receptors with PET: WAY-100635 and analogues. Nucl Med Biol 27:463–466

    Article  PubMed  CAS  Google Scholar 

  • Ichise M, Meyer JH, Yonekura Y (2001) An introduction to PET and SPECT neuroreceptor quantification models. J Nucl Med 42:755–763

    PubMed  CAS  Google Scholar 

  • Ichise M, Toyama H, Innis RB, Carson RE (2002) Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab 22:1271–1281

    Article  PubMed  Google Scholar 

  • Ichise M, Liow JS, Lu JQ, Takano A, Model K, Toyama H, Suhara T, Suzuki K, Innis RB, Carson RE (2003) Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab 23:1096–1112

    Article  PubMed  Google Scholar 

  • Iida H, Miura S, Shoji Y, Ogawa T, Kado H, Narita Y, Hatazawa J, Eberl S, Kanno I, Uemura K (1998) Noninvasive quantitation of cerebral blood flow using oxygen-15-water and a dual-PET system. J Nucl Med 39:1789–1798

    PubMed  CAS  Google Scholar 

  • Ikoma Y, Watabe H, Shidahara M, Naganawa M, Kimura Y (2008) PET kinetic analysis: error consideration of quantitative analysis in dynamic studies. Ann Nucl Med 22:1–11

    Article  PubMed  Google Scholar 

  • Ikoma Y, Watabe H, Hayashi T, Miyake Y, Teramoto N, Minato K, Iida H (2009) Quantitative evaluation of changes in binding potential with a simplified reference tissue model and multiple injections of [11C]raclopride. Neuroimage 47:1639–1648

    Article  PubMed  Google Scholar 

  • Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, Holden J, Houle S, Huang SC, Ichise M, Iida H, Ito H, Kimura Y, Koeppe RA, Knudsen GM, Knuuti J, Lammertsma AA, Laruelle M, Logan J, Maguire RP, Mintun MA, Morris ED, Parsey R, Price JC, Slifstein M, Sossi V, Suhara T, Votaw JR, Wong DF, Carson RE (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Goto R, Koyama M, Kawashima R, Ono S, Sato K, Fukuda H (1996) A simple method for the quantification of benzodiazepine receptors using iodine-123 iomazenil and single-photon emission tomography. Eur J Nucl Med 23:782–791

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Hietala J, Blomqvist G, Halldin C, Farde L (1998a) Comparison of the transient equilibrium and continuous infusion method for quantitative PET analysis of [11C]raclopride binding. J Cereb Blood Flow Metab 18:941–950

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Nyberg S, Halldin C, Lundkvist C, Farde L (1998b) PET imaging of central 5-HT2A receptors with carbon-11-MDL 100,907. J Nucl Med 39:208–214

    PubMed  CAS  Google Scholar 

  • Ito H, Takahashi H, Arakawa R, Takano H, Suhara T (2008) Normal database of dopaminergic neurotransmission system in human brain measured by positron emission tomography. Neuroimage 39:555–565

    Article  PubMed  Google Scholar 

  • Ito H, Yokoi T, Ikoma Y, Shidahara M, Seki C, Naganawa M, Takahashi H, Takano H, Kimura Y, Ichise M, Suhara T (2010) A new graphic plot analysis for determination of neuroreceptor binding in positron emission tomography studies. Neuroimage 49:578–586

    Article  PubMed  Google Scholar 

  • Jacobs AH, Li H, Winkeler A, Hilker R, Knoess C, Ruger A, Galldiks N, Schaller B, Sobesky J, Kracht L, Monfared P, Klein M, Vollmar S, Bauer B, Wagner R, Graf R, Wienhard K, Herholz K, Heiss WD (2003) PET-based molecular imaging in neuroscience. Eur J Nucl Med Mol Imaging 30:1051–1065

    Article  PubMed  CAS  Google Scholar 

  • Joshi A, Fessler JA, Koeppe RA (2008) Improving PET receptor binding estimates from Logan plots using principal component analysis. J Cereb Blood Flow Metab 28:852–865

    Article  PubMed  CAS  Google Scholar 

  • Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306–319

    Article  PubMed  CAS  Google Scholar 

  • Koeppe RA, Holthoff VA, Frey KA, Kilbourn MR, Kuhl DE (1991) Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab 11:735–744

    Article  PubMed  CAS  Google Scholar 

  • Koeppe RA, Raffel DM, Snyder SE, Ficaro EP, Kilbourn MR, Kuhl DE (2001) Dual-[11C]tracer single-acquisition positron emission tomography studies. J Cereb Blood Flow Metab 21:1480–1492

    Article  PubMed  CAS  Google Scholar 

  • Kudo Y, Okamura N, Furumoto S, Tashiro M, Furukawa K, Maruyama M, Itoh M, Iwata R, Yanai K, Arai H (2007) 2-(2-[2-Dimethylaminothiazol-5-yl]ethenyl)-6- (2-[fluoro]ethoxy)benzoxazole: a novel PET agent for in vivo detection of dense amyloid plaques in Alzheimer’s disease patients. J Nucl Med 48:553–561

    Article  PubMed  CAS  Google Scholar 

  • Kuhl DE, Reivich M, Alavi A, Nyary I, Staum MM (1975) Local cerebral blood volume determined by three-dimensional reconstruction of radionuclide scan data. Circ Res 36: 610–619

    PubMed  CAS  Google Scholar 

  • Kung HF, Kim HJ, Kung MP, Meegalla SK, Plossl K, Lee HK (1996) Imaging of dopamine transporters in humans with technetium-99 m TRODAT-1. Eur J Nucl Med 23:1527–1530

    Article  PubMed  CAS  Google Scholar 

  • Kung MP, Hou C, Zhuang ZP, Zhang B, Skovronsky D, Trojanowski JQ, Lee VM, Kung HF (2002) IMPY: an improved thioflavin-T derivative for in vivo labeling of beta-amyloid plaques. Brain Res 956:202–210

    Article  PubMed  CAS  Google Scholar 

  • Kyme AZ, Zhou VW, Meikle SR, Fulton RR (2008) Real-time 3D motion tracking for small animal brain PET. Phys Med Biol 53:2651–2666

    Article  PubMed  CAS  Google Scholar 

  • Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4:153–158

    Article  PubMed  CAS  Google Scholar 

  • Lang AE, Lozano AM (1998) Parkinson’s disease. First of two parts. N Engl J Med 339:1044–1053

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Baldwin RM, Malison RT, Zea-Ponce Y, Zoghbi SS, al-Tikriti MS, Sybirska EH, Zimmermann RC, Wisniewski G, Neumeyer JL et al (1993) SPECT imaging of dopamine and serotonin transporters with [123I]beta-CIT: pharmacological characterization of brain uptake in nonhuman primates. Synapse 13:295–309

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Martinez D, Talbot P, Abi-Dargham A (2003) Molecular imaging in psychiatric disorders. In: Valk PE, Bailey DL, Townsend DW, Maisey MN (eds) Positron emission tomography: basic science and clinical practice. Springer, London, pp 399–426

    Google Scholar 

  • Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, MacGregor RR, Hitzemann R, Bendriem B, Gatley SJ et al (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10:740–747

    Article  PubMed  CAS  Google Scholar 

  • Logan J, Fowler JS, Volkow ND, Ding YS, Wang GJ, Alexoff DL (2001) A strategy for removing the bias in the graphical analysis method. J Cereb Blood Flow Metab 21:307–320

    Article  PubMed  CAS  Google Scholar 

  • Lundkvist C, Halldin C, Ginovart N, Nyberg S, Swahn CG, Carr AA, Brunner F, Farde L (1996) [11C]MDL 100907, a radioligland for selective imaging of 5-HT(2A) receptors with positron emission tomography. Life Sci 58:PL187–PL192

    Article  CAS  Google Scholar 

  • Michaelis L, Menten ML (1913) Die kinetic der Invertinwirkung. Biochemistry Zeitschrift 49:333–369

    CAS  Google Scholar 

  • Muller L, Halldin C, Farde L, Karlsson P, Hall H, Swahn CG, Neumeyer J, Gao Y, Milius R (1993) [11C] beta-CIT, a cocaine analogue. Preparation, autoradiography and preliminary PET investigations. Nucl Med Biol 20:249–255

    Article  PubMed  CAS  Google Scholar 

  • Naganawa M, Kimura Y, Ishii K, Oda K, Ishiwata K, Matani A (2005) Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis. IEEE Trans Biomed Eng 52:201–210

    Article  PubMed  Google Scholar 

  • Oya S, Choi SR, Hou C, Mu M, Kung MP, Acton PD, Siciliano M, Kung HF (2000) 2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine (ADAM): an improved serotonin transporter ligand. Nucl Med Biol 27:249–254

    Article  PubMed  CAS  Google Scholar 

  • Pike VW (2009) PET radiotracers: crossing the blood-brain barrier and surviving metabolism. Trends Pharmacol Sci 30:431–440

    Article  PubMed  CAS  Google Scholar 

  • Pike VW, McCarron JA, Lammertsma AA, Osman S, Hume SP, Sargent PA, Bench CJ, Cliffe IA, Fletcher A, Grasby PM (1996) Exquisite delineation of 5-HT1A receptors in human brain with PET and [carbonyl-11C]WAY-100635. Eur J Pharmacol 301:R5–R7

    Article  PubMed  CAS  Google Scholar 

  • Rahmim A, Zaidi H (2008) PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 29:193–207

    Article  PubMed  Google Scholar 

  • Rahmim A, Tang J, Zaidi H (2009) Four-dimensional (4D) image reconstruction strategies in dynamic PET: beyond conventional independent frame reconstruction. Med Phys 36: 3654–3670

    Article  PubMed  Google Scholar 

  • Rosso L, Gee AD, Gould IR (2008) Ab initio computational study of positron emission tomography ligands interacting with lipid molecule for the prediction of nonspecific binding. J Comput Chem 29:2397–2405

    Article  PubMed  CAS  Google Scholar 

  • Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann NY Acad Sci 51:660–672

    Article  CAS  Google Scholar 

  • Schlemmer HP, Pichler BJ, Schmand M, Burbar Z, Michel C, Ladebeck R, Jattke K, Townsend D, Nahmias C, Jacob PK, Heiss WD, Claussen CD (2008) Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 248:1028–1035

    Article  PubMed  Google Scholar 

  • Schmidt KC and Turkheimer FE (2002) Kinetic modeling in positron emission tomography. Q J Nucl Med 46:70–85

    Article  CAS  Google Scholar 

  • Schwarz J, Tatsch K, Gasser T, Arnold G, Oertel WH (1997) [123]IBZM binding predicts dopaminergic responsiveness in patients with Parkinsonism and previous dopaminomimetic therapy. Mov Disord 12:898–902

    Article  PubMed  CAS  Google Scholar 

  • Seibyl JP, Marek K, Quinlan D, Sheff K, Zoghbi S, Zea-Ponce Y, Baldwin RM, Fussell B, Smith EO, Charney DS (1995) Decreased 123Ibeta-CIT striatal uptake correlates with symptom severity in idiopathic Parkinson’s disease. Ann Neurol 38:589–598

    Article  PubMed  CAS  Google Scholar 

  • Shidahara M, Ikoma Y, Kershaw J, Kimura Y, Naganawa M, Watabe H (2007) PET kinetic analysis: wavelet denoising of dynamic PET data with application to parametric imaging. Ann Nucl Med 21:379–386

    Article  PubMed  Google Scholar 

  • Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, Read S, Satyamurthy N, Petric A, Huang SC, Barrio JR (2002) Localization of neurofibrillary tangles and β-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiat 10:24–35

    Google Scholar 

  • Slifstein M, Laruelle M (2000) Effects of statistical noise on graphic analysis of PET neuroreceptor studies. J Nucl Med 41:2083–2088

    PubMed  CAS  Google Scholar 

  • Sossi V (2007) Cutting-edge brain imaging with positron emission tomography. PET Clinics 2:91–104

    Article  Google Scholar 

  • Spetsieris PG, Moeller JR, Dhawan V, Ishikawa T, Eidelberg D (1995) Visualizing the evolution of abnormal metabolic networks in the brain using PET. Comput Med Imaging Graph 19:295–306

    Article  PubMed  CAS  Google Scholar 

  • Stout DB, Zaidi H (2008) Preclinical multimodality imaging in vivo. PET Clin 3:251–273

    Article  Google Scholar 

  • Suehiro M, Scheffel U, Ravert HT, Dannals RF, Wagner HN Jr (1993) [11C](+)McN5652 as a radiotracer for imaging serotonin uptake sites with PET. Life Sci 53:883–892

    Article  PubMed  CAS  Google Scholar 

  • Tikosfky RS, Ichise M, Seibyl JP, Verhoeff NPLG (1999) Functional brain SPECT imaging: 1999 and beyond. Semin Nucl Med 29:193–238

    Google Scholar 

  • Tsoumpas C, Turkheimer FE, Thielemans K (2008) A survey of approaches for direct parametric image reconstruction in emission tomography. Med Phys 35:3963–3971

    Article  PubMed  Google Scholar 

  • Turkheimer FE, Banati RB, Visvikis D, Aston JA, Gunn RN, Cunningham VJ (2000) Modeling dynamic PET-SPECT studies in the wavelet domain. J Cereb Blood Flow Metab 20:879–893

    Article  PubMed  CAS  Google Scholar 

  • Van Laere K, Zaidi H (2006) Quantitative analysis in functional brain imaging. In: Zaidi H (ed) Quantitative analysis of nuclear medicine images. Springer, New York, pp 435–470

    Chapter  Google Scholar 

  • Vander BT, Minoshima S, Giordani B, Foster NL, Frey KA, Berent S, Albin RL, Koeppe RA, Kuhl DE (1997) Cerebral metabolic differences in Parkinson’s and Alzheimer’s diseases matched for dementia severity. J Nucl Med 38:797–802

    Google Scholar 

  • Vaska P, Woody CL, Schlyer DJ, Shokouhi S, Stoll SP, Pratte J-F, O’Connor P, Junnarkar SS, Rescia S, Yu B, Purschke M, Kandasamy A, Villanueva A, Kriplani A, Radeka V, Volkow N, Lecomte R, Fontaine R (2004) RatCAP: miniaturized head-mounted PET for conscious rodent brain imaging. IEEE Trans Nucl Sci 51:2718–2722

    Article  Google Scholar 

  • Watabe H, Channing MA, Der MG, Adams HR, Jagoda E, Herscovitch P, Eckelman WC, Carson RE (2000) Kinetic analysis of the 5-HT2A ligand [11C]MDL 100,907. J Cereb Blood Flow Metab 20:899–909

    Article  PubMed  CAS  Google Scholar 

  • Watabe H, Jino H, Kawachi N, Teramoto N, Hayashi T, Ohta Y, Iida H (2005) Parametric imaging of myocardial blood flow with 15O-water and PET using the basis function method. J Nucl Med 46:1219–1224

    PubMed  Google Scholar 

  • Watabe H, Ikoma Y, Kimura Y, Naganawa M, Shidahara M (2006) PET kinetic analysis–­compartmental model. Ann Nucl Med 20:583–588

    Article  PubMed  CAS  Google Scholar 

  • Wilson AA, Ginovart N, Schmidt M, Meyer JH, Threlkeld PG, Houle S (2000) Novel radiotracers for imaging the serotonin transporter by positron emission tomography: synthesis, radiosynthesis, and in vitro and ex vivo evaluation of (11)C-labeled 2-(phenylthio)araalkylamines. J Med Chem 43:3103–3110

    Article  PubMed  CAS  Google Scholar 

  • Woody C, Vaska P, Schlyer D, Pratte J-F, Junnarkar S, Park S-J, Stoll S, Purschke M, Southekal S, Kriplani A, Krishnamoorthy S, Maramraju S, Lee D, Schiffer W, Dewey S, Neill J, Kandasamy A, O’Connor P, Radeka V, Fontaine R, Lecomte R (2007) Initial studies using the RatCAP conscious animal PET tomograph. Nucl Instr Meth A 571:14–17

    Article  CAS  Google Scholar 

  • Wu HM, Hoh CK, Choi Y, Schelbert HR, Hawkins RA, Phelps ME, Huang SC (1995) Factor analysis for extraction of blood time-activity curves in dynamic FDG-PET studies. J Nucl Med 36:1714–1722

    PubMed  CAS  Google Scholar 

  • Zaidi H, Montandon M-L (2006) The new challenges of brain PET imaging technology. Curr Med Imag Rev 2:3–13

    Article  CAS  Google Scholar 

  • Zhou Y, Ye W, Brasic JR, Wong DF (2010) Multi-graphical analysis of dynamic PET. Neuroimage 49(4):2947–2957

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation under grants SNSF 31003A-135576 and SNSF 33CM30-124114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Zaidi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zaidi, H., Shidahara, M. (2012). Neuroreceptor Imaging. In: Choi, IY., Gruetter, R. (eds) Neural Metabolism In Vivo. Advances in Neurobiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1788-0_11

Download citation

Publish with us

Policies and ethics