Advertisement

Inequalities of Ostrowski Type

  • Slivestru Sever Dragomir
Chapter
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

Ostrowski’s type inequalities provide sharp error estimates in approximating the value of a function by its integral mean. They can be utilized to obtain a priory error bounds for different quadrature rules in approximating the Riemann integral by different Riemann sums. They also shows, in general, that the mid-point rule provides the best approximation in the class of all Riemann sums sampled in the interior points of a given partition.

Keywords

Hilbert Space Convex Function Bounded Variation Type Inequality Selfadjoint Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.A. Anastassiou, Univariate Ostrowski inequalities, revisited. Monatsh. Math. 135 (2002), no. 3, 175–189.Google Scholar
  2. 2.
    P. Cerone and S.S. Dragomir, Midpoint-type rules from an inequalities point of view, Ed. G. A. Anastassiou, Handbook of Analytic-Computational Methods in Applied Mathematics, CRC Press, New York. 135–200.Google Scholar
  3. 3.
    P. Cerone and S.S. Dragomir, New bounds for the three-point rule involving the Riemann–Stieltjes integrals, in Advances in Statistics Combinatorics and Related Areas, C. Gulati, et al. (Eds.), World Science Publishing, 2002, 53–62.Google Scholar
  4. 4.
    P. Cerone, S.S. Dragomir and J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Mathematica, 32(2) (1999), 697–712.MATHMathSciNetGoogle Scholar
  5. 5.
    S.S. Dragomir, Error estimates in approximating functions of selfadjoint operators in Hilbert spaces via a Montgomery’s type expansion, Preprint RGMIA Res. Rep. Coll. 14(2011), Art. 2.Google Scholar
  6. 6.
    S.S. Dragomir,  An Ostrowski like inequality for convex functions and applications, Revista Math. Complutense, 16(2) (2003), 373–382.MATHGoogle Scholar
  7. 7.
    S.S. Dragomir, On the Ostrowski’s inequality for Riemann–Stieltjes integral, Korean J. Appl. Math. 7 (2000), 477–485.Google Scholar
  8. 8.
    S.S. Dragomir, On the Ostrowski inequality for Riemann–Stieltjes integral ∫ \nolimits \nolimits a b ftdut where f is of Hölder type and u is of bounded variation and applications, J. KSIAM 5(1) (2001), 35–45.Google Scholar
  9. 9.
    S.S. Dragomir, Ostrowski’s inequality for monotonous mappings and applications, J. KSIAM 3(1) (1999), 127–135.Google Scholar
  10. 10.
    S.S. Dragomir, The Ostrowski’s integral inequality for Lipschitzian mappings and applications, Comp. and Math. with Appl. 38 (1999), 33–37.Google Scholar
  11. 11.
    S.S. Dragomir, Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure & Appl. Math. 3(5) (2002), Art. 68.Google Scholar
  12. 12.
    S.S. Dragomir, Some Ostrowski’s Type Vector Inequalities for Functions of Selfadjoint Operators in Hilbert Spaces, Preprint RGMIA Res. Rep. Coll. 13(2010), No. 2, Art. 7.Google Scholar
  13. 13.
    S.S. Dragomir, The Ostrowski’s integral inequality for Lipschitzian mappings and applications, Comp. and Math. with Appl. , 38 (1999), 33–37.Google Scholar
  14. 14.
    S.S. Dragomir, Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure & Appl. Math. , 3(5) (2002), Art. 68.Google Scholar
  15. 15.
    S.S. Dragomir, Inequalities of Grüss type for the Stieltjes integral and applications, Kragujevac J. Math., 26 (2004), 89–112.MathSciNetGoogle Scholar
  16. 16.
    S.S. Dragomir, A generalisation of Cerone’s identity and applications, Tamsui Oxf. J. Math. Sci., 23(1) (2007), 79–90.MATHMathSciNetGoogle Scholar
  17. 17.
    S.S. Dragomir, Accurate approximations for the Riemann–Stieltjes integral via theory of inequalities, J. Math. Inequal., 3(4) (2009), 663–681.MATHMathSciNetGoogle Scholar
  18. 18.
    S.S. Dragomir, Bounds for the difference between functions of selfadjoint operators in Hilbert spaces and integral means, Preprint RGMIA Res. Rep. Coll. 14(2011), Art. 1.Google Scholar
  19. 19.
    S.S. Dragomir, On the Ostrowski’s inequality for mappings of bounded variation and applications, Math. Ineq. & Appl. , 4(1) (2001), 33–40.Google Scholar
  20. 20.
    S.S. Dragomir, The Ostrowski’s integral inequality for Lipschitzian mappings and applications, Comp. and Math. with Appl. , 38 (1999), 33–37.Google Scholar
  21. 21.
    S.S. Dragomir, Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure & Appl. Math. , 3(5) (2002), Art. 68.Google Scholar
  22. 22.
    S.S. Dragomir, Comparison between functions of selfadjoint operators in Hilbert spaces and integral means, Preprint RGMIA Res. Rep. Coll. 13(2010), No. 2, Art.10. Google Scholar
  23. 23.
    S.S. Dragomir, Ostrowski’s type inequalities for some classes of continuous functions of selfadjoint operators in Hilbert spaces, RGMIA Res. Rep. Coll. 13(2010), No. 2, Art. 9.Google Scholar
  24. 24.
    S.S. Dragomir, On the Ostrowski inequality for the Riemann–Stieltjes integral ∫ \nolimits \nolimits a b ftdut, where f is of Hölder type and u is of bounded variation and applications, J. KSIAM, 5(2001), No. 1, 35–45.Google Scholar
  25. 25.
    S.S. Dragomir, Inequalities for the Čebyšev functional of two functions of selfadjoint operators in Hilbert spaces, RGMIA Res. Rep. Coll., 11(e) (2008), Art.. [ONLINE: http://www.staff.vu.edu.au/RGMIA/v11(E).asp].
  26. 26.
    S.S. Dragomir, Ostrowski’s type inequalities for Hölder continuous functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 13(2010), No. 2, Art. 6.Google Scholar
  27. 27.
    S.S. Dragomir and Th. M. Rassias (Eds), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publisher, Dordrecht, 2002.Google Scholar
  28. 28.
    S.S. Dragomir, P. Cerone, J. Roumeliotis and S. Wang, A weighted version of Ostrowski inequality for mappings of Hölder type and applications in numerical analysis, Bull. Math. Soc. Sci. Math. Romanic , 42(90) (4) (1999), 301–314.Google Scholar
  29. 29.
    S.S. Dragomir and S. Wang, A new inequality of Ostrowski’s type in L 1-norm and applications to some special means and to some numerical quadrature rules, Tamkang J. of Math., 28 (1997), 239–244. MATHMathSciNetGoogle Scholar
  30. 30.
    S.S. Dragomir and S. Wang, Applications of Ostrowski’s inequality to the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math. Lett., 11 (1998), 105–109.CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    S.S. Dragomir and S. Wang, A new inequality of Ostrowski’s type in L p-norm and applications to some special means and to some numerical quadrature rules, Indian J. of Math. 40(3), (1998), 245–304.MathSciNetGoogle Scholar
  32. 32.
    S.S. Dragomir and I. Fedotov, An inequality of Grüss type for Riemann–Stieltjes integral and applications for special means, Tamkang J. Math., 29(4) (1998), 287–292.MATHMathSciNetGoogle Scholar
  33. 33.
    S.S. Dragomir and I. Fedotov, A Grüss type inequality for mappings of bounded variation and applications to numerical analysis, Non. Funct. Anal. & Appl., 6(3) (2001), 425–437.MATHMathSciNetGoogle Scholar
  34. 34.
    A.M. Fink, Bounds on the deviation of a function from its averages, Czechoslovak Math. J. , 42(117) (1992), No. 2, 298–310.Google Scholar
  35. 35.
    T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.Google Scholar
  36. 36.
    Z. Liu, Refinement of an inequality of Grüss type for Riemann–Stieltjes integral, Soochow J. Math. , 30(4) (2004), 483–489.Google Scholar
  37. 37.
    C.A. McCarthy, c p, Israel J. Math., 5(1967), 249–271.CrossRefMathSciNetGoogle Scholar
  38. 38.
    B. Mond and J. Pečarić, Convex inequalities in Hilbert spaces, Houston J. Math., 19(1993), 405–420.MATHMathSciNetGoogle Scholar
  39. 39.
    A. Ostrowski, Über die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Hel , 10 (1938), 226–227.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Engineering and ScienceVictoria UniversityMelbourneAustralia
  2. 2.School of Computational and Applied MathematicsUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations