Skip to main content

New DfM Domain: Stress Effects

  • Chapter
  • First Online:
  • 1786 Accesses

Abstract

The mismatch of thermal properties among the IC component materials results in thermo-mechanical stress inside and around the devices [1–3]. It is tempting to divide the sources of such stress into the intentional and non-intentional ones or intrinsic and extrinsic. However, a better distinction would be whether we are able to take advantage of them in product implementation (intrinsic) or are they outside the device model space (extrinsic). When dividing them by the source of stress, one may identify the ones at die level, i.e., built into silicon, and the ones at package level, i.e., between the chip and its package. (Chip-Package Integration CPI). A DfM methodology for controlling stress, using design rules and material properties for both chip and package stack design, is required to span orders of magnitude of physical dimensions. It should not only comprehend the effects of mechanical stresses in electrical responses of the circuits, but also their reliability impact.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhang, X.: Chip-package interaction and its impact on the reliability of flip-chip packages. Ph.D. Thesis, UT Austin (2009)

    Google Scholar 

  2. Sukharev, V., Zschech, E.: Stress management for 3D IC’s using through-silicon vias. AIP Conf. Proc. 1378, 21–49 (2011)

    Article  Google Scholar 

  3. Radojcic, R., Novak, M., Nakamoto, M.: TechTuning: stress management for 3D through-silicon via stacking technologies. AIP Conf. Proc. 1378, 5–20 (2011)

    Article  Google Scholar 

  4. Thompson, M.S.E., Armstrong, M., Auth, C., Cea, S., Chau, R., Glass, G., Hoffman, T., Klaus, J., Zhiyong, M., Mcintyre, B., Murthy, A., Obradovic, B., Shifren, L., Sivakumar, S., Tyagi, S., Ghani, T., Mistry, K., Bohr, M., El-Mansy, Y.: IEEE Electron. Devices. Lett. 25, 191–193 (2004)

    Article  Google Scholar 

  5. Flachowsky, S., Wei, A., Illgen, R., Hermann, T., Hocnischel, J., Horstmann, M., Klix, W., Stenzel, R.: IEEE Trans. Electron. Devices 57, 1343–1354 (2010)

    Article  Google Scholar 

  6. Wang, G., Ho, P.S., Groothuis, S.: Microelectron. Reliab. 45, 1079–1093 (2005)

    Article  Google Scholar 

  7. Sheu, Y.M., Yang, S.J., Wang, C.C., et al.: Modeling mechanical stress effect on dopant diffusion in scaled MOSFETs. IEEE Trans. Electron. Devices 52, 30–38 (2005)

    Article  Google Scholar 

  8. Sukharev, A. Kteyan, N. Khachatryan, et al. 3D IC TSV-based technology: stress assessment for chip performance. In: AIP Conference on Proceedings of 11th International Workshop on Stress-Induced Phenomena in Metallization, 1300, 1143 (2010)

    Google Scholar 

  9. COMSOL Multiphysics: Multiphysics modeling and simulation software. http://www.comsol.com

  10. Ryu, S., Lu, K., Zhang, X., Im, J., Ho, P.S., Huang, R.: Impact of near-surface thermal stresses on interfacial reliability of through-silicon-vias for 3-D interconnects. IEEE Trans. Device Mater. Reliab. 11, 35–43 (2011)

    Article  Google Scholar 

  11. Love, A.E.N.: The stresses produced in a semiinfinite solid by pressure on part of the boundary. Phil. Trans. Roy. Soc. 228, 377–420 (1929)

    Article  MATH  Google Scholar 

  12. Smith, C.S.: Piezoresistance effect in germanium and silicon. Phys. Rev. 94, 42–49 (1954)

    Article  Google Scholar 

  13. Aziz, M.J.: Thermodynamics of diffusion under pressure and stress: relation to point defect mechanisms. Appl. Phys. Lett. 70, 2810–2812 (1997)

    Article  Google Scholar 

  14. Joshi, V., Sukharev, V., Torres, A., Agarwal, K., Sylvester, D., Sylvester, D., Blaauw, D.: Closed-form modeling of layout-dependent mechanical stress. In: Proceedings of DAC, pp. 673–678 (2010)

    Google Scholar 

  15. Pang, I.T., Nikolic, B.: Measurement and analysis of variability in 45 nm strained-Si CMOS technology. In: Proceedings of IEEE CICC, pp. 129–132 (2008)

    Google Scholar 

  16. Peter, K., Marz, R., Torres, A., Attia, M.: White paper. The roadmap to LFD value: quantifying a return on investment in Calibre LFD (2011)

    Google Scholar 

  17. Orshansky, M., Nassif, S.R., Bonning, D.: Design for Manufacturability and Statistical Design. Springer, New York (2008)

    Google Scholar 

  18. Hytch, M., Houdellier, F., Snoeck, E., Claverie, A.: Strain metrology of devices by dark-field electron holography: a new technique for mapping 2D strain distributions. In: IEEE IEDM, pp. 1–4 (2009)

    Google Scholar 

  19. Koch, C.T., Ozdöl, V.B., van Aken, P.A.: Appl. Phys. Lett 96, 091901-1–091901-3 (2010)

    Article  Google Scholar 

  20. Engelmann, H.J., Geisler, H., Huchner, R., Potapov, P., Utess, D., Zschech, E.: Challenges to TEM in high-performance microprocessor manufacturing. In: Proceedings of 4th EMC, vol. 2, pp. 13–14 (2008)

    Google Scholar 

  21. van Vroonhoven, J.C.W.: Effects of adhesion and delamination on stress singularities in plastic packaged integrated circuits. Trans. ASME J. Electron. Pack. 15, 28–33 (1993)

    Article  Google Scholar 

  22. Ho, P.S., et al.: Reliability issues for flip chip packages. Microelectron. Reliab 44, 719–737 (2004)

    Article  Google Scholar 

  23. Chen, K., et al.: Effect of underfill materials on the reliability of low-k flipchip packaging. Microelectron. Reliab. 46(1), 155–163 (2006)

    Article  Google Scholar 

  24. Shang, J.K., zeng, Q.L., Zhang, L., Zhu, Q.S.: Mechanical fatigue of Snrich Pb-free solder alloys. J. Mater. Sci. Mater. Electron. 18, 211–227 (2007)

    Article  Google Scholar 

  25. Darveaux, R., Banerji, K.: Fatigue analysis of flip chip assemblies using thermal stress simulations and a Coffin-Manson relation. In: Proceedings of 41st IEEE ECTC, pp. 797–805 (1991)

    Google Scholar 

  26. Liu, X.H., Shaw, T.M., Lane, M.W., Liniger, E.G., Herbst, B.W., Questad, D.L.: Chip-package interaction modeling of ultra low-k/copper back end of line. In: International Interconnect Technology Conference (2007)

    Google Scholar 

  27. Kang, Bansal T., Li, Y.: Reliability of high-end flip-chip package with large 45 nm ultra low-k die. In: Electronic Components and Technology Conference (2008)

    Google Scholar 

  28. Ong, X., et al.: Underfill selection methodology for fine Pitch Cu/low-k FCBGA packages. Microeletron. Reliab. 49, 150–162 (2009)

    Article  Google Scholar 

  29. Anand, L.: Constitutive equations for the rate-dependent deformation of metals at elevated temperatures. ASME J. Eng. Mater. Technol. 104, 12–17 (1982)

    Article  Google Scholar 

  30. Zhang, X., Im, S., Huang, R., Ho, P.S.: Chip-package interaction and reliability impact on Cu/Low-k Interconnects. In: Electrical, Optical and Thermal Interconnections for 3D Integrated Systems (2008)

    Google Scholar 

  31. Yao, Q. et al.: Adhesion enhancement of underfill materials by silane additives. In: Proceedings of the International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, p. 165 (1999)

    Google Scholar 

  32. Suo, Z.: Reliability of interconnect structures. In: Gerberich, W., Yang, W. (eds.) Interfacial and Nanoscale Failure of Comprehensive Structural Integrity (Milne, I., Ritchie, R.O., Karihaloo, B. Editors-in-Chief), vol. 8, pp. 265–324 (2003)

    Google Scholar 

  33. Suo, Z., Hutchinson, J.W.: Sandwich specimens for measuring interface crack toughness. Mater. Sci. Eng. A107, 135–143 (1989)

    Article  Google Scholar 

  34. Lu, K., et al.: Moisture transport and its effects on fracture strength and dielectric constant of underfill materials. In: ECTC (2007)

    Google Scholar 

  35. Wong, E.H., Rajoo, R.: Moisture absorption and diffusion characterization of packaging materials advanced treatment. Microelectron. Reliab. V43, 2087–2096 (2003)

    Article  Google Scholar 

  36. Mercado, L., Goldberg, C., Kuo, S.-M.: A simulation method for predicting packaging mechanical reliability with low k dielectrics. In: International Interconnect Technology Conference, pp. 119–121 (2002)

    Google Scholar 

  37. Mercado, L., Kuo, S.-M., Goldberg, C., Kuo, S.-M., Lee, T.-Y.: Analysis of flip-chip packaging challenges on copper low-k interconnects. In: Proceedings of 53rd Electronic Components and Technology Conference, vol. 166, pp. 1784–1790 (2003)

    Google Scholar 

  38. Wang, G.T., Merrill, C., Zhao, J.H., Groothuis, S., Ho, P.: Packaging effects on reliability of Cu/low k interconnects. IEEE Trans. Device Mater. Reliab. 3, 119–128 (2003)

    Article  Google Scholar 

  39. Zhao, J.H., Wilkerson, B., Uehling, T.: Stress-induced phenomena in metallization. In: Ho, P.S., Baker, S.P., Nakamura, T., Volkert, C.A. (eds) AIP Conference Proceedings of the 7th International Workshop, vol. 714, pp 52–61 (2004)

    Google Scholar 

  40. Wang, G.T.: Ph.D. thesis, The University of Texas, Austin (2004)

    Google Scholar 

  41. Rhee, S.H., Du, Y., Ho, P.S.: Thermal stress characteristics of Cu/oxide and Cu/low-k submicron interconnect structures. J. Appl. Phys. 93(7), 3926–3933 (2003)

    Article  Google Scholar 

  42. ANSYS Advanced Guide Manual, Chapter 9, in ANSYS Version 9.0 Documentation, ANSYS, Inc. (2006)

    Google Scholar 

  43. Shih, C.F., Asaro, R.J.: Elastic–plastic analysis of cracks on biomaterial interfaces: part I-small scale yielding. J. Appl. Mech. 55, 299–316 (1988)

    Article  Google Scholar 

  44. Hughes, T.J.R., Stern, M.: Techniques for developing special finite element shape functions with particular references to singularities. Int. J. Numer. Methods. Eng 15, 733–751 (1980)

    Article  MATH  Google Scholar 

  45. Sukumar, N., Huang, Z., Prevost, J.-H., Suo, Z.: Partition of unity enrichment for bimaterial interface cracks. Int. J. Numer. Methods. Eng. 59, 1075–1102 (2004)

    Article  MATH  Google Scholar 

  46. Ayhan, A.O., Nied, H.F.: Finite element analysis of interface cracking in semiconductor packages. IEEE Trans. Compon. Packag. Technol. 22, 503–511 (1999)

    Article  Google Scholar 

  47. Ayhan, A.O., Kaya, A.C., Nied, H.F.: Analysis of three-dimensional interface cracks using enriched finite elements. Int. J. Fract. 142, 255–276 (2006)

    Article  MATH  Google Scholar 

  48. Liu, X.H., Lane, M.W., Shaw, T.M., Simonyi, E.: Delamination in patterned films. Int. J. Solids. Struct. 44(6), 1706–1718 (2007)

    Article  MATH  Google Scholar 

  49. Bucholz, F.G., Sistla, R., Krishnamurthy, T.: D and 3D applications of the improved and generalized modified crack closure integral method. In: Atluri, S.N., Yagawa, G. (eds.) Computational Mechanics’88. Springer, New York (1988)

    Google Scholar 

  50. Krueger, R.: The virtual crack closure technique: history, approach and applications. NASA/CR-2002 211628 (2002)

    Google Scholar 

  51. Sun, C.T., Jih, C.J.: On strain energy release rates for interfacial cracks in biomaterial media. Eng. Frac. Mech. 28, 13–20 (1987)

    Article  Google Scholar 

  52. Raju, I.S., Crews, J.H., Aminpour, M.A.: Convergence of strain energy release rate components for edge delaminated composite materials. Eng. Frac. Mech. 30, 383–396 (1988)

    Article  Google Scholar 

  53. Chai, T.C., et al.: Impact of Packaging Design on Reliability of Large Die Cu/low- (BD) Interconnect, ECTC, Orlando (May 2008)

    Google Scholar 

  54. Hutchinson, J.W., Suo, Z.: Mixed-mode cracking in layered materials. Adv. Appl. Mech. 29, 63–191 (2002)

    Article  Google Scholar 

  55. Suo, Z.: Reliability of interconnect structures, Interfacial and nanoscale failure. In: Gerberich, W., Yang, W. (eds) Comprehensive Structural Integrity (Milne, I., Ritchie, R.O., Karihaloo, B. Editors-in-Chief), vol. 8, pp. 265–324

    Google Scholar 

  56. Im, J., Shaffer, E., Stokich, T., Strandjord, A., Hetzner, J., Curphy, J., et al.: On the mechanical reliability of photo-BCB-based thin film dielectric polymer for electronic packaging applications. J. Electro. Packag. 122(1), 28–33 (2000)

    Article  Google Scholar 

  57. Chiang, M., Wu, W., He, J., Amis, E.J.: Combinatorial approach to the edge delamination test for thin film reliability—concept and simulation. Thin. Solid. Films. 437(1–2), 197–203 (2003)

    Article  Google Scholar 

  58. Garrou, P., et al.: Handbook of 3D Integration. Wiley-VCH, 20 Oct 2008

    Google Scholar 

  59. Ramm, P., et al.: Through silicon via technology – processes and reliability for wafer-level 3D system integration. In: ECTC (2008)

    Google Scholar 

  60. Thompson, S., et al.: Uniaxial-process-induced strained-Si: extending the CMOS roadmap. IEEE Trans. Electron. Devices 53(5), 1010–1020 (2006)

    Article  Google Scholar 

  61. Savastiouk, S.: Through silicon vias (TSV): Physical design and reliability. In: Semetech 3D ICs Workshop, San Diego (September 2008)

    Google Scholar 

  62. Zhao, J., et al.: Measurement of elastic modulus, Poisson ratio, and coefficient of thermal expansion of on-wafer submicron films. J. Appl. Phys. 85(9), 6421 (1999)

    Article  Google Scholar 

  63. Lu, T.C., et al.: Matrix cracking in intermetallic composites caused by thermal expansion mismatch. Acta. Metall. Mater. 39(8), 1883–1890 (1991)

    Article  Google Scholar 

  64. Eldrige, J., et al.: Fiber push-out testing apparatus for elevated temperatures. J. Mater. Res 9(4), 1035–1042 (1994)

    Article  Google Scholar 

  65. Hutchinson, J.W., et al.: Models of fiber debonding and pullout in brittle composites with friction. Mech. Mater. 9, 139–163 (1990)

    Article  Google Scholar 

  66. Bagchi, A., Evans, A.G.: Measurements of the debond energy for thin metallization lines on dielectrics. Thin. Solid. Films. 286, 203–212 (1996)

    Article  Google Scholar 

  67. Budiansky, B., Hutchinson, J.W., Evans, A.G.: Matrix fracture in fiber-reinforced ceramics. J. Mech. Phys. Solids. 34(2), 167–189 (1986)

    Article  MATH  Google Scholar 

  68. Eneman, P., Verheyen, A., De Keersgieter, M., Juczak, K.D., De Meyer, K.: Scalability of stress induced by contact-etch-stop layers: a simulation study. IEEE Trans. Electron. Devices 54(6), 1446–1453 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Balasinski, A. (2014). New DfM Domain: Stress Effects. In: Design for Manufacturability. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1761-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1761-3_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1760-6

  • Online ISBN: 978-1-4614-1761-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics