Skip to main content

DfM at 28 nm and Beyond

  • Chapter
  • First Online:
  • 1956 Accesses

Abstract

Introduction of more advanced technology nodes carries two key risks:

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Liebmann, L., Pileggi, L., Hibbeler, J., Rovner, V., Jhaveri, T., Northrop, G.: Simplify to survive, prescriptive layouts ensure profitable scaling to 32 μm and beyond. In: Proceedings of SPIE, vol. 7275, p. 72750A (March 2009)

    Google Scholar 

  2. Liebmann, L., Baum, Z., Graur, I., Samuels, D.: DFM lessons learned from altPSM design. In: Proceedings of SPIE, 6925, 69250C (2008)

    Google Scholar 

  3. Perez, V., et al.: Convergent automated chip-level lithography checking and fixing at 45 nm. In: Proceedings of SPIE, 7275 (2009)

    Google Scholar 

  4. Hui, C., et al.: Hotspot detection and design recommendation using silicon-calibrated CMP model. In: Proceedings of SPIE, 7275 (2009)

    Google Scholar 

  5. Liebmann, L.: Layout impact of resolution enhancement techniques: impediment or opportunity? In: ISPD’03, Monterey (2003)

    Google Scholar 

  6. Webb, C.: Intel design for manufacturing and evolution of design rules. Proc. SPIE 6925, 692503 (2008)

    Article  Google Scholar 

  7. Pileggi, L., Strojwas, A.J.: Regular fabrics for nano-scaled CMOS technologies. In: Proceedings of ISSCC (2006)

    Google Scholar 

  8. Jhaveri, T., et al.: Maximization of layout printability/manufacturability by extreme layout regularity. Micro Nanolithogr. MEMS MOEMS 6(03), 031011–033000 (2007)

    Article  Google Scholar 

  9. Abercrombie, D., Elakkumanan, P., Liebmann, L.: Restrictive design rules and their impact on 22 nm design and physical verification, EDPS2009 (2009)

    Google Scholar 

  10. Volkov, A., Routing Technologies for 28 nm and beyond, Chip Design Magazine, Summer 2011

    Google Scholar 

  11. White Paper: Tips and techniques for 28 nm design optimization, Altera Corporation, November 2011

    Google Scholar 

  12. Beylier, C., Moyroud, C., Granger, F.B., Robert, F., Yesilada, E., Trouiller, Y., Marin, J.-C.: Fully integrated litho aware PnR design solution. Proc. SPIE 8327, 83270A (2012)

    Article  Google Scholar 

  13. Hurley, P., Kryszczull, K.: Replacing design rules in the VLSI Design Cycle, Proc. of SPIE 8327, 83270B1–B6 (2012)

    Article  Google Scholar 

  14. Dai, V., Capodicci, L., Yang, J., Rodriguez, N.: Developing DRC plus through 2D pattern extraction and clustering techniques. Proc. SPIE 7275, 727517 (2009)

    Article  Google Scholar 

  15. Russel, P.: Norvig, Artificial Intelligence. A Modern Approach. Prentice Hall, Englewood Cliffs (1995)

    Google Scholar 

  16. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2001)

    MATH  Google Scholar 

  17. Mitchell, T.M.: Machine Learning. Mc Graw Hill, New York (1997)

    MATH  Google Scholar 

  18. Cao, Y., Lu, Y.-W., Chen, L., Ye, J.: Optimized hardware and software for fast, full chip simulation. Proc. SPIE 5754, 407–414 (2005)

    Article  Google Scholar 

  19. Jang, J.: Manufacturability aware design. Ph.D. thesis, The University of Michigan (2007)

    Google Scholar 

  20. Taur, Y., Ning, T.H.: Fundamentals of Modern VLSI Devices. Cambridge University Press (1998)

    Google Scholar 

  21. Pileggi, L., Schmit, H., Strojwas, A.J., et al.: Exploring regular fabrics to optimize the performance-cost trade-off. In: Proceedings of the ACM/IEEE DAC (2003)

    Google Scholar 

  22. Webb, C.: Layout rule trends and affect upon CPU design, design and process integration for microectronic manufacturing IV. In: Wong, A.K.K., Singh, V.K. (eds) Proceedings of SPIE, 6156, 615602 (2006)

    Google Scholar 

  23. Eclair Pattem Matcher End User’s Guide, Version 5.0, CommandCAD, Inc., March 2006

    Google Scholar 

  24. Yang, J., Cohen, E., Tabery, C., Rodriguez, N., Craig, M.: An up-stream design auto-fix flow for manufacturability enhancement. In: 43rd Design Automation Conference (2006)

    Google Scholar 

  25. Torres, J.A., Berglund, N.C.: Towards manufacturability closure process variations and layout design. In: IEEE EDPS Workshop (2005)

    Google Scholar 

  26. Torre, J.A.: Litho-friendly design: a necessary complement to RET. Microlithogr. World 15(2), 10–13 (2006). 12-13A

    MathSciNet  Google Scholar 

  27. Strojwas, A.: Cost effective scaling to 22 nm and below technology nodes. In: VLSI Technology, Systems and Applications, pp 1–2 (2011)

    Google Scholar 

  28. Hoppe, W., Roessler, T., Torres, J.A.: Beyond rule-based physical verification. In: Proceedings of SPIE, 6349(190) (2006)

    Google Scholar 

  29. Chiang, C., Kawa, J.: Three DfM challenges: random defects, thickness variation, and printability variation. In: IEEE Asia Pacific Conference on Circuits and Systems, 2006. APCCAS 2006, p.1099, 4–7 Dec 2006

    Google Scholar 

  30. Peter, K., März, R., Gröndahl, S.: Litho-friendly design (LFD) methodologies applied to library cells. Proc. SPIE 6349(14), 63490E (2006)

    Article  Google Scholar 

  31. Capodieci, L.: From optical proximity correction to lithography-driven physical design (1996–2006): 10 years of resolution enhancement technology and the roadmap enablers for the next decade, optical microlithography XIX. In: Flagello, D.G. (ed) Proceedings of SPIE, 6154, 615401 (2006)

    Google Scholar 

  32. Gianfagna, M., Liebmann, L., Pileggi, L., Hibbeler, J., Rovner, V., Jhaveri, T.: Greg Northrop, Private Communication

    Google Scholar 

  33. Jang, D. et al.: DFM optimization of standard cells considering random and systematic defect. In: ISOCC (2008)

    Google Scholar 

  34. Paek, S.W., Kang, J.H., Ha, N., Kim, B.M., Jang, D.H., Jeon, J., Kim, D.W., Chung, K.Y., Yu, S., Park, J.H., Bae s., Song, D., Noh, W., Kim, Y.D., Song, H.S., Choi, H.B., Kim, K.S., Choi, K.M., Choi, W.C., Jeon, J.W., Lee, J.W., Kim, K.S., Park, S.H., Chung, N.Y., Lee, K.D., Hong, Y.K., Kim, B.S.: Yield enhancement with DFM, Design for manufacturability through design-process integration VI. In: Mason, M.E., Sturtevant, J.L. (eds) Proceedings of SPIE, 8327, 832704 (2012)

    Google Scholar 

  35. TSMC Open Innovation Platform: www.tsmc.com.tw (2011)

  36. Paek, S.W., Jang, D.H., Park, J.H., Ha, N., Kim, B.M., et al.: Enhanced layout optimization of sub-45 nm standard: memory cells. SPIE, 7725, 72751M (2009)

    Google Scholar 

  37. Kahng, A.B., Samadi, K.: CMP fill synthesis: a survey of recent studies. IEEE Trans. Comp. Aid. Design 27(1), 3–19 (2008)

    Article  Google Scholar 

  38. Simmons, M.C., Kang, J.H., Kim, Y., et al.: A state-of-the-art hotspot recognition system for full chip verification with lithographic simulation. SPIE, 7974, 79740M (2011)

    Google Scholar 

  39. Ha, N., Lee, J., Paek, S.W. et al.: In-design DFM CMP flow for block level simulation using 32 nm CMP model. SPIE, 7974, 79740W (2011)

    Google Scholar 

  40. Drennan, P.G., Kniffin, M.L., Locascio, D.R.: Implications of proximity Effects for Analog Design, IEEE CICC (2006)

    Google Scholar 

  41. Postnikow, S., Hector, S.: ITRS CD error budgets: proposed simulation study methodology. In: International Technology Roadmap for Semiconductors, May (2003)

    Google Scholar 

  42. Tabery, C., Page, L.: Use of design pattern layout for automated metrology recipe generation. In: Proceedings of SPIE: Metrology, Inspection and Process Control for Microlithography XIX, vol. 5752, pp. 1424–1434 (2005)

    Google Scholar 

  43. Hook, T., et al.: The dependence of channel length on channel width in narrow-channel CMOS devices for 0.25–0.13 μm technologies. IEEE Electron. Device. Lett. 21(2), 85–87 (2000)

    Article  Google Scholar 

  44. Su, K.W., et al.: A scalable model for STI mechanical stress effect on layout dependence of MOS electrical characterization. In: IEEE CICC, pp. 245–248 (2003)

    Google Scholar 

  45. Scott, G., et al.: NMOS drive current reduction caused by transistor layout and trench isolation induced stress. In: IEEE IEDM, pp. 827–830 (1999)

    Google Scholar 

  46. Bianchi, R.A., et al.: Accurate modeling of trench isolation induced mechanical stress effects on MOSFET electrical performance. In: IEEE IEDM, pp. 117–120 (2002)

    Google Scholar 

  47. Miyamoto, M., et al.: Impact of reducing STI-induced stress on layout dependence of MOSFET characteristics. IEEE Trans. Electron. Devices. 51, 440–443 (2004)

    Article  Google Scholar 

  48. Choi, Y.S., Lian, G., Olubuigde, O., Chung, J., Riley, D., Baldwin, G.: Layout variation Effects in Advanced MOSFECTs: STI-Induced Embedded Sige strain Relaxation and Dual Stress Liner Boundary Proxinuty Effect. IEEE Trans. Electron. Devices. 57(11), 2886–2890 (2010)

    Article  Google Scholar 

  49. Hook, T.H., et al.: Lateral ion implant straggle and mask proximity effect. IEEE Trans. Electron. Devices. 50, 1946–1951 (2003)

    Article  Google Scholar 

  50. Sheu, Y.M., et al.: Modeling well edge proximity effect on highly-scaled MOSFETs. In: IEEE CICC, pp. 831–834 (2005)

    Google Scholar 

  51. Kumar, D.V., et al.: Evaluation of the impact of layout on device and analog circuit performance with lateral asymmetric channel MOSFETs. IEEE Trans. Electron. Devices 52, 1603–1609 (2005)

    Article  Google Scholar 

  52. Enemon, G., Verheyen, P., De Keersgieter, A., Jurczak, M., de Meyer, K.: Scalability of stress induced by contact-etch-stop layers: a simulation study. IEEE Trans. Electron. Device 54(6), 1446 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Balasinski, A. (2014). DfM at 28 nm and Beyond. In: Design for Manufacturability. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1761-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1761-3_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1760-6

  • Online ISBN: 978-1-4614-1761-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics