Skip to main content

Part of the book series: Energy Systems ((ENERGY))

Abstract

The objectives of this chapter are: Explaining some optimization techniques. Explaining the minimum norm theorem and how it could be used as an optimization algorithm, where a set of equations can be obtained. Introducing the fuzzy system as an optimization technique. Introducing the simulated annealing algorithm (SAA) as an optimization technique. Introducing the tabu search algorithm (TSA) as an optimization technique. Introducing the genetic algorithm (GA) as an optimization technique. Introducing the particle swarm (PS) as an optimization technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El-Hawary, M.E., Christensen, G.S.: Optimal Economic Operation of Electric Power Systems. Academic, New York (1979)

    Google Scholar 

  2. Horst, R., Pardalos, P.M. (eds.): Handbook of Global Optimization. Kluwer, Netherlands (1995)

    MATH  Google Scholar 

  3. Kuo, B.C.: Automatic Control Systems, 4th edn. Prentice-Hall, Englewood Cliffs (1982)

    MATH  Google Scholar 

  4. Nemhauser, G.L., Rinnooy Kan, A.H.G., Todd, M.J. (eds.): Optimization. Elsevier Science, Netherlands (1989)

    MATH  Google Scholar 

  5. Wolfe, M.A.: Numerical Methods for Unconstrained Optimization: An Introduction. Van Nostrand Reinhold, New York (1978)

    MATH  Google Scholar 

  6. Zill, D.G., Cullen, M.R.: Advanced Engineering Mathematics. PWS, Boston (1992)

    MATH  Google Scholar 

  7. Porter, W.A.: Modern Foundations of Systems Engineering. Macmillan, New York (1966)

    Google Scholar 

  8. Luenberger, D.G.: Optimization by Vector Space Methods. Wiley, New York (1969)

    MATH  Google Scholar 

  9. Sage, A.: Optimum System Controls. Prentice-Hall, Englewood Cliffs (1968)

    Google Scholar 

  10. Sage, A.P., White, C.C.: Optimum Systems Control. Prentice-Hall, Englewood Cliffs (1977)

    MATH  Google Scholar 

  11. Bryson, A.E., Ho, Y.C.: Applied Optimal Control. Wiley, New York (1975)

    Google Scholar 

  12. Rao, S.S.: Optimization Theory and Applications. Wiley Eastern, New Delhi (1979)

    MATH  Google Scholar 

  13. Leitmann, G.: The Calculus of Variations and Optimal Control. Plenum Press, New York (1981)

    MATH  Google Scholar 

  14. Kirk, D.E.: Optimal Control Theory: An Introduction. Prentice-Hall, Englewood Cliffs (1970)

    Google Scholar 

  15. Narici, B.: Functional Analysis. Academic, New York (1966)

    MATH  Google Scholar 

  16. Aarts, E., Korst, J.: Simulated Annealing and Boltzman Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing. Wiley, New York (1989)

    Google Scholar 

  17. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  18. Cerny, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theor. Appl. 45(1), 41–51 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  19. Selim, S.Z., Alsultan, K.: A simulated annealing algorithm for the clustering problem. Pattern Recogn. 24(10), 1003–1008 (1991)

    Article  MathSciNet  Google Scholar 

  20. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  21. Tado, M., Kubo, R., Saito, N.: Statistical Physics. Springer, Berlin (1983)

    Google Scholar 

  22. Aarts, E.H.L., van Laarhoven, P.J.M.: Statistical cooling: a general approach to combinatorial optimization problems. Philips J. Res. 40, 193–226 (1985)

    MathSciNet  Google Scholar 

  23. Aarts, E.H.L., van Laarhoven, P.J.M.: A new polynomial time cooling schedule. In: Proceedings of the IEEE International Conference on Computer-Aided Design, pp. 206–208. Santa Clara (1985)

    Google Scholar 

  24. Aarts, E.H.L., van Laarhoven, P.J.M.: Simulated annealing: a pedestrian review of the theory and some applications. In: Devijver, P.A., Kittler, J. (eds.) Pattern Recognition Theory and Applications. NASI Series on Computer and Systems Sciences 30, pp. 179–192. Springer, Berlin (1987)

    Google Scholar 

  25. Glover, F., Greenberg, H.J.: New approach for heuristic search: a bilateral linkage with artificial intelligence. Eur. J. Oper. Res. 39, 119–130 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  26. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  27. Glover, F.: Tabu search-part I. Orsa J. Comput. 1(3), 190–206 (1989). Summer

    MATH  Google Scholar 

  28. Glover, F.: Artificial intelligence, heuristic frameworks and tabu search. Manage. Decis. Econ. 11, 365–375 (1990)

    Article  Google Scholar 

  29. Glover, F.: Tabu search-part II. Orsa J. Comput. 2(1), 4–32 (1990). Winter

    MATH  Google Scholar 

  30. Bland, J.A., Dawson, G.P.: Tabu search and design optimization. Comput. Aided Des. 23(3), 195–201 (1991). April

    Article  MATH  Google Scholar 

  31. Glover, F.: A user’s guide to tabu search. Ann. Oper. Res. 41, 3–28 (1993)

    Article  MATH  Google Scholar 

  32. Laguna, M., Glover, F.: Integrating target analysis and tabu search for improved scheduling systems. Expert Syst. Appl. 6, 287–297 (1993)

    Article  Google Scholar 

  33. Kelly, J.P., Olden, B.L., Assad, A.A.: Large-scale controlled rounding using tabu search with strategic oscillation. Ann. Oper. Res. 41, 69–84 (1993)

    Article  MATH  Google Scholar 

  34. Barnes, J.W., Laguna, M.: A tabu search experience in production scheduling. Ann. Oper. Res. 41, 141–156 (1993)

    Article  MATH  Google Scholar 

  35. Charest, M., Ferland, J.A.: Preventive maintenance scheduling of power generating units. Ann. Oper. Res. 41, 185–206 (1993)

    Article  MATH  Google Scholar 

  36. Daniels, R.L., Mazzola, J.B.: A tabu search heuristic for the flexible-resource flow shop scheduling problem. Ann. Oper. Res. 41, 207–230 (1993)

    Article  MATH  Google Scholar 

  37. Amico, M.D., Trubian, M.: Applying tabu search to the jop-shop scheduling problem. Ann. Oper. Res. 41, 231–252 (1993)

    Article  MATH  Google Scholar 

  38. Mooney, E.L., Rardin, R.L.: Tabu search for a class of scheduling problems. Ann. Oper. Res. 41, 253–278 (1993)

    Article  MATH  Google Scholar 

  39. Davis, L. (ed.): Handbook of Genetic Algorithms. Van Nostrand, New York (1991)

    Google Scholar 

  40. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin/Heidelberg/New York (1992)

    MATH  Google Scholar 

  41. Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man Cybern. 16(1), 122–128 (1986)

    Article  Google Scholar 

  42. Grefenstette, J.J., Baker, J.E.: How genetic algorithm work: a critical look at implicit parallelism. In: The Proceedings of the Third International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo (1989)

    Google Scholar 

  43. Buckles, B.P., Petry, F.E., Kuester, R.L.: Schema survival rates and heuristic search in genetic algorithms. In: Proceedings of Tools for AI, pp. 322–327. Washington, DC (1990)

    Google Scholar 

  44. Awadh, B., Sepehri, N., Hawaleshka, O.: A computer-aided process planning model based on genetic algorithms. Comput. Oper. Res. 22(8), 841–856 (1995)

    Article  MATH  Google Scholar 

  45. Goldberg, D.E., Deb, K., Clark, J.H.: Genetic algorithms, noise, and the sizing of populations. Complex Syst. 6, 333–362 (1992)

    MATH  Google Scholar 

  46. Homaifar, A., Guan, S., Liepins, G.E.: Schema analysis of the traveling salesman problem using genetic algorithms. Complex Syst. 6, 533–552 (1992)

    MATH  MathSciNet  Google Scholar 

  47. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesely, Reading Mass (1989)

    MATH  Google Scholar 

  48. Mantawy, H., Abdel-Magid, Y.L., Selim, S.Z.: A simulated annealing algorithm for unit commitment. IEEE Trans. Power Syst. 13(1), 197–204 (1998)

    Google Scholar 

  49. Dasgupta, D., Mcgregor, D.R.: Thermal unit commitment using genetic algorithms. IEE Proc. Gener. Transm. Distrib. 141(5), 459–465 (1994). September

    Article  Google Scholar 

  50. Ma, X., El-Keib, A.A., Smith, R.E., Ma, H.: A genetic algorithm based approach to thermal unit commitment of electric power systems. Electr. Power Syst. Res. 34, 29–36 (1995)

    Article  Google Scholar 

  51. Kazarilis, S.A., Bakirtzis, A.G., Petridis, V.: A genetic algorithm solution to the unit commitment problem. IEEE Trans. Power Syst. 11(1), 83–91 (1996). February

    Article  Google Scholar 

  52. Yang, P.-C., Yang, H.-T., Huang, C.-L.: Solving the unit commitment problem with a genetic algorithm through a constraint satisfaction technique. Electr. Power Syst. Res. 37, 55–65 (1996)

    Article  Google Scholar 

  53. Ross, T.J.: Fuzzy Logic with Engineering Applications. McGraw-Hill, New York (1995)

    MATH  Google Scholar 

  54. Nazarka, J., Zalewski, W.: An application of the fuzzy regression analysis to the electrical load estimation. Electrotechnical Conference: MELECON’96, Bari, Italy, vol. 3, pp. 1563–1566. IEEE Catalog #96CH35884, 13–16 May 1996

    Google Scholar 

  55. Tanaka, H., Uejima, S., Asai, K.: Linear regression analysis with fuzzy model. IEEE Trans. Syst. Man Cybern. 12(6), 903–907 (1983)

    Google Scholar 

  56. Chang, P.T., Lee, E.S.: Fuzzy least absolute deviations regression based on the ranking of fuzzy numbers. IEEE World Congress on Fuzzy Systems, Orlando, FL, USA, IEEE Proceeding, vol. 2, pp. 1365–1369 (1994)

    Google Scholar 

  57. Watada, J., Yabuchi, Y.: Fuzzy robust regression analysis. In: IEEE World Congress on Fuzzy Systems, Orlando, FL, USA, IEEE Proceeding, vol. 2, pp. 1370–1376 (1994)

    Google Scholar 

  58. Alex, R., Wang, P.Z.: A new resolution of fuzzy regression analysis. In: IEEE International Conference on Systems, Man, and Cybernetics, San Diego, California, USA, vol. 2, pp. 2019–2021. (1998)

    Google Scholar 

  59. Ishibuchi, H., Nii, M.: Fuzzy regression analysis by neural networks with non-symmetric fuzzy number weights. In: Proceedings of IEEE International Conference on Neural Networks, Washington, DC, USA, vol. 2, pp. 1191–1196 (1996)

    Google Scholar 

  60. Ghoshray, S.: Fuzzy linear regression analysis by symmetric triangular fuzzy number coefficients. In: Proceedings of IEEE International Conference on Intelligent Engineering Systems, Budapest, Hungary, pp. 307–313 (1997)

    Google Scholar 

  61. Hu, X., Eberhart, R.C., Shi, Y.: Engineering optimization with particle swarm. In: IEEE International Conference on Evolutionary Computation, pp. 53–57 (2003)

    Google Scholar 

  62. Kennedy, J.: The particle swarm: social adaptation of knowledge. In: Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC ’97), pp. 303–8. Indianapolis (1997)

    Google Scholar 

  63. Angeline, P.: Evolutionary optimization versus particle swarm optimization: philosophy and performance differences. In: Proceedings of the 7th Annual Conference on Evolutionary Programming, San Diego, California, USA, pp. 601–10 (1998)

    Google Scholar 

  64. Shi, Y., Eberhart, R.: Parameter selection in particle swarm optimization. In: Proceedings of the 7th Annual Conference on Evolutionary Programming, San Diego, California, USA, pp. 591–600 (1998)

    Google Scholar 

  65. Stott, B., Hobson, E.: Power system security control calculation using linear programming. IEEE Transactions on Power Apparatus and Systems, vol. PAS-97, pp. 1713–1731 (1978)

    Google Scholar 

  66. Ozcan, E., Mohan, C.: Analysis of a simple particle swarm optimization system. Intell. Eng. Syst. Artif. Neural Networks 8, 253–258 (1998)

    Google Scholar 

  67. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Evolutionary Computation, Perth, WA, Australia, pp. 1942–1948 (1995)

    Google Scholar 

  68. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: IEEE International Conference on Evolutionary Computation, San Antonio, TX, USA, pp. 84–88 (2000)

    Google Scholar 

  69. Abido, M.A.: Optimal design of power-system stabilizers using particle swarm optimization. IEEE Trans. Energy Convers. 17(3), 406–413 (2002). September

    Article  Google Scholar 

  70. Gaing, Z.L.: Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans. Power Syst. 18(3), 11871–195 (2003). August

    Article  Google Scholar 

  71. Hirotaka, Y., Kawata, K., Fukuyama, Y.: A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans. Power Syst. 15(4), 1232–1239 (2000). November

    Article  Google Scholar 

  72. Miranda, V., Fonseca, N.: EPSO-evolutionary particle swarm optimization, a new algorithm with applications in power systems. In: IEEE Trans. Power Syst. pp. 745–750 (2000)

    Google Scholar 

  73. Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. Proceedings of IEEE International Conference on Evolutionary Computation, pp. 69–73. Anchorage (1998)

    Google Scholar 

  74. Zhenya, H., et al.: Extracting rules from fuzzy neural network by particle swarm optimization. Proceedings of IEEE International Conference on Evolutionary Computation, pp. 74–77. Anchorage (1998)

    Google Scholar 

  75. Kennedy, J., Spears, W.: Matching algorithm to problems: an expermental test of the particle swarm optimization and some genetic algorithms on the multimodal problem generator. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 78–83. Anchorage (1998)

    Google Scholar 

  76. Angeline, P.: Using selection to improve particle swarm optimization. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 84–89. Anchorage (1998)

    Google Scholar 

  77. Talaq, J.H., El-Hawary, F., El-Hawary, M.E.: A summary of environmental/economic dispatch algorithms. IEEE Trans. Power Syst. 9, 1508–1516 (1994). August

    Article  Google Scholar 

  78. Soliman, S.A., Al-Kandari, M.A.: Electrical Load Forecasting; Modeling and Model Construction. Elsevier, New York (2010)

    Google Scholar 

  79. Mantawy, H., Abdel-Magid, Y.L., Selim, S.Z., Salah, M.A.: An improved simulated annealing algorithm for unit commitment-application to Sceco-East. In: 3rd International Conference on Intelligent Applications in Communications and Power Systems, IACPS’97, pp. 133–139. UAE (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Soliman, S.AH., Mantawy, AA.H. (2012). Mathematical Optimization Techniques. In: Modern Optimization Techniques with Applications in Electric Power Systems. Energy Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1752-1_2

Download citation

Publish with us

Policies and ethics