Odor and Pheromone Sensing Via Chemoreceptors

  • Minghong Ma
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 739)


Evolutionally, chemosensation is an ancient but yet enigmatic sense. All organisms ranging from the simplest unicellular form to the most advanced multicellular creature possess the capability to detect chemicals in the surroundings. Conversely, all living things emit some forms of smells, either as communicating signals or as by-products of metabolism. Many species (from worms, insects to mammals) rely on the olfactory systems which express a large number of chemoreceptors to locate food and mates and to avoid danger. Most chemoreceptors expressed in olfactory organs are G-protein coupled receptors (GPCRs) and can be classified into two major categories: odorant receptors (ORs) and pheromone receptors, which principally detect general odors and pheromones, respectively. In vertebrates, these two types of receptors are often expressed in two distinct apparatuses: The main olfactory epithelium (MOE) and the vomeronasal organ (VNO), respectively. Each olfactory sensory neuron (OSN) in the MOE typically expresses one type of OR from a large repertoire. General odors activate ORs and their host OSNs (ranging from narrowly- to broadly-tuned) in a combinatorial manner and the information is sent to the brain via the main olfactory system leading to perception of smells. In contrast, pheromones stimulate relatively narrowly-tuned receptors and their host VNO neurons and the information is sent to the brain via the accessory olfactory system leading to behavioral and endocrinological changes. Recent studies indicate that the functional separation between these two systems is blurred in some cases and there are more subsystems serving chemosensory roles. This chapter focuses on the molecular and cellular mechanisms underlying odor and pheromone sensing in rodents, the best characterized vertebrate models.


Olfactory Receptor Olfactory System Odorant Receptor Olfactory Sensory Neuron Olfactory Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Karlson P, Luscher M. Pheromones: a new term for a class of biologically active substances. Nature 1959; 183:55–56.PubMedCrossRefGoogle Scholar
  2. 2.
    Dulac C, Wagner S. Genetic analysis of brain circuits underlying pheromone signaling. Annu Rev Genet 2006; 40:449–467.PubMedCrossRefGoogle Scholar
  3. 3.
    Touhara K, Vosshall LB. Sensing odorants and pheromones with chemosensory receptors. Annu Rev Physiol 2009; 71:307–332.PubMedCrossRefGoogle Scholar
  4. 4.
    Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 1991; 65:175–187.PubMedCrossRefGoogle Scholar
  5. 5.
    Bargmann CI. Chemosensation in C. elegans. WormBook 2006: 1–29.Google Scholar
  6. 6.
    Liberles SD, Buck LB. A second class of chemosensory receptors in the olfactory epithelium. Nature 2006; 442:645–650.PubMedCrossRefGoogle Scholar
  7. 7.
    Fulle HJ, Vassar R, Foster DC et al. A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proc Natl Acad Sci USA 1995; 92:3571–3575.PubMedCrossRefGoogle Scholar
  8. 8.
    Juilfs DM, Fulle HJ, Zhao AZ et al. A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proc Natl Acad Sci USA 1997; 94:3388–3395.PubMedCrossRefGoogle Scholar
  9. 9.
    Hu J, Zhong C, Ding C et al. Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 2007; 317:953–957.PubMedCrossRefGoogle Scholar
  10. 10.
    Leinders-Zufall T, Cockerham RE, Michalakis S et al. Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci USA 2007; 104:14507–14512.PubMedCrossRefGoogle Scholar
  11. 11.
    Dulac C, Torello AT. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat Rev Neurosci 2003; 4:551–562.PubMedCrossRefGoogle Scholar
  12. 12.
    Liberles SD, Horowitz LF, Kuang D et al. Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc Natl Acad Sci USA 2009; 106:9842–9847.PubMedCrossRefGoogle Scholar
  13. 13.
    Riviere S, Challet L, Fluegge D et al. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 2009; 459:574–577.PubMedCrossRefGoogle Scholar
  14. 14.
    Rodolfo-Masera T. Su 1’esistenza di un particolare organo olfacttivo nel setto nasale della cavia e di altri roditori. Arch Ital Anat Embryol 1943; 48:157–212.Google Scholar
  15. 15.
    Gruneberg H. A ganglion probably belonging to the N. terminalis system in the nasal mucosa of the mouse. Z Anat Entwicklungsgesch 1973; 140:39–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Tian H, Ma M. Molecular organization of the olfactory septal organ. J Neurosci 2004; 24:8383–8390.PubMedCrossRefGoogle Scholar
  17. 17.
    Kaluza JF, Gussing F, Bohm S et al. Olfactory receptors in the mouse septal organ. J Neurosci Res 2004; 76:442–452.PubMedCrossRefGoogle Scholar
  18. 18.
    Grosmaitre X, Fuss SH, Lee AC et al. SR1, a mouse odorant receptor with an unusually broad response profile. J Neurosci 2009; 29:14545–14552.PubMedCrossRefGoogle Scholar
  19. 19.
    Grosmaitre X, Santarelli LC, Tan J et al. Dual functions of mammalian olfactory sensory neurons as odor detectors and mechanical sensors. Nat Neurosci 2007; 10:348–354.PubMedCrossRefGoogle Scholar
  20. 20.
    Fleischer J, Schwarzenbacher K, Besser S et al. Olfactory receptors and signalling elements in the Grueneberg ganglion. J Neurochem 2006; 98:543–554.PubMedCrossRefGoogle Scholar
  21. 21.
    Fleischer J, Schwarzenbacher K, Breer H. Expression of trace amine-associated receptors in the Grueneberg ganglion. Chem Senses 2007; 32:623–631.PubMedCrossRefGoogle Scholar
  22. 22.
    Brechbuhl J, Klaey M, Broillet MC. Grueneberg ganglion cells mediate alarm pheromone detection in mice. Science 2008; 321:1092–1095.PubMedCrossRefGoogle Scholar
  23. 23.
    Mamasuew K, Breer H, Fleischer J. Grueneberg ganglion neurons respond to cool ambient temperatures. Eur J Neurosci 2008; 28:1775–1785.PubMedCrossRefGoogle Scholar
  24. 24.
    Graziadei PP, Graziadei GA. Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J Neurocytol 1979; 8:1–18.PubMedCrossRefGoogle Scholar
  25. 25.
    Schwob JE. Neural regeneration and the peripheral olfactory system. Anat Rec 2002; 269:33–49.PubMedCrossRefGoogle Scholar
  26. 26.
    Niimura Y, Nei M. Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc Natl Acad Sci USA 2005; 102:6039–6044.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang X, Firestein S. Genomics of olfactory receptors. Results Probl Cell Differ 2009; 47:25–36.PubMedGoogle Scholar
  28. 28.
    Zhang X, Firestein S. The olfactory receptor gene superfamily of the mouse. Nat Neurosci 2002; 5:124–133.PubMedGoogle Scholar
  29. 29.
    Gilad Y, Przeworski M, Lancet D. Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol 2004; 2:E5.PubMedCrossRefGoogle Scholar
  30. 30.
    Niimura Y, Nei M. Extensive gains and losses of olfactory receptor genes in Mammalian evolution. PLoS One 2007; 2:e708.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang X, Zhang X, Firestein S. Comparative genomics of odorant and pheromone receptor genes in rodents. Genomics 2007; 89:441–450.PubMedCrossRefGoogle Scholar
  32. 32.
    Young JM, Friedman C, Williams EM et al. Different evolutionary processes shaped the mouse and human olfactory receptor gene families. Hum Mol Genet 2002; 11:535–546.PubMedCrossRefGoogle Scholar
  33. 33.
    Ehlers A, Beck S, Forbes SA et al. MHC-linked olfactory receptor loci exhibit polymorphism and contribute to extended HLA/OR-haplotypes. Genome Res 2000; 10:1968–1978.PubMedCrossRefGoogle Scholar
  34. 34.
    Tacher S, Quignon P, Rimbault M et al. Olfactory receptor sequence polymorphism within and between breeds of dogs. J Hered 2005; 96:812–816.PubMedCrossRefGoogle Scholar
  35. 35.
    Eklund AC, Belchak MM, Lapidos K et al. Polymorphisms in the HLA-linked olfactory receptor genes in the Hutterites. Hum Immunol 2000; 61:711–717.PubMedCrossRefGoogle Scholar
  36. 36.
    Keller A, Zhuang H, Chi Q et al. Genetic variation in a human odorant receptor alters odour perception. Nature 2007; 449:468–472.PubMedCrossRefGoogle Scholar
  37. 37.
    Menashe I, Abaffy T, Hasin Y et al. Genetic elucidation of human hyperosmia to isovaleric acid. PLoS Biol 2007; 5:e284.PubMedCrossRefGoogle Scholar
  38. 38.
    Chess A, Simon I, Cedar H et al. Allelic inactivation regulates olfactory receptor gene expression. Cell 1994; 78:823–834.PubMedCrossRefGoogle Scholar
  39. 39.
    Serizawa S, Ishii T, Nakatani H et al. Mutually exclusive expression of odorant receptor transgenes. Nat Neurosci 2000; 3:687–693.PubMedCrossRefGoogle Scholar
  40. 40.
    Rawson NE, Eberwine J, Dotson R et al. Expression of mRNAs encoding for two different olfactory receptors in a subset of olfactory receptor neurons. J Neurochem 2000; 75:185–195.PubMedCrossRefGoogle Scholar
  41. 41.
    Tian H, Ma M. Activity plays a role in eliminating olfactory sensory neurons expressing multiple odorant receptors in the mouse septal organ. Mol Cell Neurosci 2008; 38:484–488.PubMedCrossRefGoogle Scholar
  42. 42.
    Nguyen MQ, Zhou Z, Marks CA et al. Prominent roles for odorant receptor coding sequences in allelic exclusion. Cell 2007; 131:1009–1017.PubMedCrossRefGoogle Scholar
  43. 43.
    Serizawa S, Miyamichi K, Nakatani H et al. Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse. Science 2003; 30:30.Google Scholar
  44. 44.
    Fleischmann A, Shykind BM, Sosulski DL et al. Mice with a “monoclonal nose”: perturbations in an olfactory map impair odor discrimination. Neuron 2008; 60:1068–1081.PubMedCrossRefGoogle Scholar
  45. 45.
    Lewcock JW, Reed RR. A feedback mechanism regulates monoallelic odorant receptor expression. Proc Natl Acad Sci USA 2004; 101:1069–1074.PubMedCrossRefGoogle Scholar
  46. 46.
    Shykind BM, Rohani SC, O’Donnell S et al. Gene switching and the stability of odorant receptor gene choice. Cell 2004; 117:801–815.PubMedCrossRefGoogle Scholar
  47. 47.
    Fuss SH, Omura M, Mombaerts P. Local and cis effects of the H element on expression of odorant receptor genes in mouse. Cell 2007; 130:373–384.PubMedCrossRefGoogle Scholar
  48. 48.
    Lomvardas S, Barnea G, Pisapia DJ et al. Interchromosomal interactions and olfactory receptor choice. Cell 2006; 126:403–413.PubMedCrossRefGoogle Scholar
  49. 49.
    Nishizumi H, Kumasaka K, Inoue N et al. Deletion of the core-H region in mice abolishes the expression of three proximal odorant receptor genes in cis. Proc Natl Acad Sci USA 2007; 104:20067–20072.PubMedCrossRefGoogle Scholar
  50. 50.
    Ressler KJ, Sullivan SL, Buck LB. A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell 1993; 73:597–609.PubMedCrossRefGoogle Scholar
  51. 51.
    Vassar R, Ngai J, Axel R. Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell 1993; 74:309–318.PubMedCrossRefGoogle Scholar
  52. 52.
    Iwema CL, Fang H, Kurtz DB et al. Odorant receptor expression patterns are restored in lesion-recovered rat olfactory epithelium. J Neurosci 2004; 24:356–369.PubMedCrossRefGoogle Scholar
  53. 53.
    Miyamichi K, Serizawa S, Kimura HM et al. Continuous and overlapping expression domains of odorant receptor genes in the olfactory epithelium determine the dorsal/ventral positioning of glomeruli in the olfactory bulb. J Neurosci 2005; 25:3586–3592.PubMedCrossRefGoogle Scholar
  54. 54.
    Schoenfeld TA, Cleland TA. Anatomical contributions to odorant sampling and representation in rodents: zoning in on sniffing behavior. Chem Senses 2006; 31:131–144.PubMedCrossRefGoogle Scholar
  55. 55.
    Scott JW. Sniffing and spatiotemporal coding in olfaction. Chem Senses 2006; 31:119–130.PubMedCrossRefGoogle Scholar
  56. 56.
    Kent PF, Mozell MM, Murphy SJ et al. The interaction of imposed and inherent olfactory mucosal activity patterns and their composite representation in a mammalian species using voltage-sensitive dyes. J Neurosci 1996; 16:345–353.PubMedGoogle Scholar
  57. 57.
    Firestein S. How the olfactory system makes sense of scents. Nature 2001; 413:211–218.PubMedCrossRefGoogle Scholar
  58. 58.
    Ma M. Encoding olfactory signals via multiple chemosensory systems. Crit Rev Biochem Mol Biol 2007; 42:463–480.PubMedCrossRefGoogle Scholar
  59. 59.
    Munger SD, Leinders-Zufall T, Zufall F. Subsystem organization of the mammalian sense of smell. Annu Rev Physiol 2008.Google Scholar
  60. 60.
    Su CY, Menuz K, Carlson JR. Olfactory perception: receptors, cells and circuits. Cell 2009; 139:45–59.PubMedCrossRefGoogle Scholar
  61. 61.
    Wong ST, Trinh K, Hacker B et al. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 2000; 27:487–497.PubMedCrossRefGoogle Scholar
  62. 62.
    Brunet LJ, Gold GH, Ngai J. General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron 1996; 17:681–693.PubMedCrossRefGoogle Scholar
  63. 63.
    Belluscio L, Gold GH, Nemes A et al. Mice deficient in G(olf) are anosmic. Neuron 1998; 20:69–81.PubMedCrossRefGoogle Scholar
  64. 64.
    Stephan AB, Shum EY, Hirsh S et al. ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci USA 2009; 106:11776–11781.PubMedCrossRefGoogle Scholar
  65. 65.
    Zufall F, Leinders-Zufall T. The cellular and molecular basis of odor adaptation. Chem Senses 2000; 25:473–481.PubMedCrossRefGoogle Scholar
  66. 66.
    Matthews HR, Reisert J. Calcium, the two-faced messenger of olfactory transduction and adaptation. Curr Opin Neurobiol 2003; 13:469–475.PubMedCrossRefGoogle Scholar
  67. 67.
    Boccaccio A, Lagostena L, Hagen V et al. Fast adaptation in mouse olfactory sensory neurons does not require the activity of phosphodiesterase. J Gen Physiol 2006; 128:171–184.PubMedCrossRefGoogle Scholar
  68. 68.
    Kurahashi T, Menini A. Mechanism of odorant adaptation in the olfactory receptor cell [see comments]. Nature 1997; 385:725–729.PubMedCrossRefGoogle Scholar
  69. 69.
    Song Y, Cygnar KD, Sagdullaev B et al. Olfactory CNG channel desensitization by Ca2+/CaM via the B1b subunit affects response termination but not sensitivity to recurring stimulation. Neuron 2008; 58:374–386.PubMedCrossRefGoogle Scholar
  70. 70.
    Wei J, Zhao AZ, Chan GC et al. Phosphorylation and inhibition of olfactory adenylyl cyclase by CaM kinase II in neurons: a mechanism for attenuation of olfactory signals. Neuron 1998; 21:495–504.PubMedCrossRefGoogle Scholar
  71. 71.
    Leinders-Zufall T, Ma M, Zufall F. Impaired odor adaptation in olfactory receptor neurons after inhibition of Ca(2+)/calmodulin kinase II. J Neurosci 1999; 19:RC19.Google Scholar
  72. 72.
    Borisy FF, Ronnett GV, Cunningham AM et al. Calcium/calmodulin-activated phosphodiesterase expressed in olfactory receptor neurons. J Neurosci 1992; 12:915–923.PubMedGoogle Scholar
  73. 73.
    Yan C, Zhao AZ, Bentley JK et al. Molecular cloning and characterization of a calmodulin-dependent phosphodiesterase enriched in olfactory sensory neurons. Proc Natl Acad Sci USA 1995; 92:9677–9681.PubMedCrossRefGoogle Scholar
  74. 74.
    Cherry JA, Davis RL. A mouse homolog of dunce, a gene important for learning and memory in Drosophila, is preferentially expressed in olfactory receptor neurons. J Neurobiol 1995; 28:102–113.PubMedCrossRefGoogle Scholar
  75. 75.
    Cygnar KD, Zhao H. Phosphodiesterase 1C is dispensable for rapid response termination of olfactory sensory neurons. Nat Neurosci 2009; 12:454–462.PubMedCrossRefGoogle Scholar
  76. 76.
    Katada S, Hirokawa T, Oka Y et al. Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J Neurosci 2005; 25:1806–1815.PubMedCrossRefGoogle Scholar
  77. 77.
    Axel R. Scents and sensibility: a molecular logic of olfactory perception (Nobel lecture). Angew Chem Int Ed Engl 2005; 44:6110–6127.PubMedCrossRefGoogle Scholar
  78. 78.
    Buck LB. Unraveling the sense of smell (Nobel lecture). Angew Chem Int Ed Engl 2005; 44:6128–6140.PubMedCrossRefGoogle Scholar
  79. 79.
    Saito H, Kubota M, Roberts RW et al. RTP family members induce functional expression of mammalian odorant receptors. Cell 2004; 119:679–691.PubMedCrossRefGoogle Scholar
  80. 80.
    Neuhaus EM, Mashukova A, Zhang W et al. A specific heat shock protein enhances the expression of mammalian olfactory receptor proteins. Chem Senses 2006; 31:445–452.PubMedCrossRefGoogle Scholar
  81. 81.
    Von Dannecker LE, Mercadante AF, Malnic B. Ric-8B promotes functional expression of odorant receptors. Proc Natl Acad Sci USA 2006; 103:9310–9314.CrossRefGoogle Scholar
  82. 82.
    Shirokova E, Schmiedeberg K, Bedner P et al. Identification of specific ligands for orphan olfactory receptors. G protein-dependent agonism and antagonism of odorants. J Biol Chem 2005; 280:11807–11815.PubMedCrossRefGoogle Scholar
  83. 83.
    Saito H, Chi Q, Zhuang H et al. Odor coding by a Mammalian receptor repertoire. Sci Signal 2009; 2:ra9.CrossRefGoogle Scholar
  84. 84.
    Zhao H, Ivic L, Otaki JM et al. Functional expression of a mammalian odorant receptor. Science 1998; 279:237–242.PubMedCrossRefGoogle Scholar
  85. 85.
    Malnic B, Hirono J, Sato T et al. Combinatorial receptor codes for odors. Cell 1999; 96:713–723.PubMedCrossRefGoogle Scholar
  86. 86.
    Touhara K, Sengoku S, Inaki K et al. Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proc Natl Acad Sci USA 1999; 96:4040–4045.PubMedCrossRefGoogle Scholar
  87. 87.
    Bozza T, Feinstein P, Zheng C et al. Odorant receptor expression defines functional units in the mouse olfactory system. J Neurosci 2002; 22:3033–3043.PubMedGoogle Scholar
  88. 88.
    Grosmaitre X, Vassalli A, Mombaerts P et al. Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: a patch clamp analysis in gene-targeted mice. Proc Natl Acad Sci USA 2006; 103:1970–1975.PubMedCrossRefGoogle Scholar
  89. 89.
    Araneda RC, Kini AD, Firestein S. The molecular receptive range of an odorant receptor. Nat Neurosci 2000; 3:1248–1255.PubMedCrossRefGoogle Scholar
  90. 90.
    Hallem EA, Carlson JR. Coding of odors by a receptor repertoire. Cell 2006; 125:143–160.PubMedCrossRefGoogle Scholar
  91. 91.
    Mombaerts P. Axonal wiring in the mouse olfactory system. Annu Rev Cell Dev Biol 2006; 22:713–737.PubMedCrossRefGoogle Scholar
  92. 92.
    Wilson RI, Mainen ZF. Early events in olfactory processing. Annu Rev Neurosci 2006; 29:163–201.PubMedCrossRefGoogle Scholar
  93. 93.
    Lledo PM, Gheusi G, Vincent JD. Information processing in the mammalian olfactory system. Physiol Rev 2005; 85:281–317.PubMedCrossRefGoogle Scholar
  94. 94.
    Haberly LB. Parallel-distributed processing in olfactory cortex: new insights from morphological and physiological analysis of neuronal circuitry. Chem Senses 2001; 26:551–576.PubMedCrossRefGoogle Scholar
  95. 95.
    Zou Z, Buck LB. Combinatorial effects of odorant mixes in olfactory cortex. Science 2006; 311:1477–1481.PubMedCrossRefGoogle Scholar
  96. 96.
    Stettler DD, Axel R. Representations of odor in the piriform cortex. Neuron 2009; 63:854–864.PubMedCrossRefGoogle Scholar
  97. 97.
    Franks KM, Isaacson JS. Strong single-fiber sensory inputs to olfactory cortex: implications for olfactory coding. Neuron 2006; 49:357–363.PubMedCrossRefGoogle Scholar
  98. 98.
    Poo C, Isaacson JS. Odor representations in olfactory cortex: “sparse” coding, global inhibition and oscillations. Neuron 2009; 62:850–861.PubMedCrossRefGoogle Scholar
  99. 99.
    Rennaker RL, Chen CF, Ruyle AM et al. Spatial and temporal distribution of odorant-evoked activity in the piriform cortex. J Neurosci 2007; 27:1534–1542.PubMedCrossRefGoogle Scholar
  100. 100.
    Boehm U, Zou Z, Buck LB. Feedback loops link odor and pheromone signaling with reproduction. Cell 2005; 123:683–695.PubMedCrossRefGoogle Scholar
  101. 101.
    Yoon H, Enquist LW, Dulac C. Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell 2005; 123:669–682.PubMedCrossRefGoogle Scholar
  102. 102.
    Lin DY, Zhang SZ, Block E et al. Encoding social signals in the mouse main olfactory bulb. Nature 2005; 434:470–477.PubMedCrossRefGoogle Scholar
  103. 103.
    Spehr M, Kelliher KR, Li XH et al. Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. J Neurosci 2006; 26:1961–1970.PubMedCrossRefGoogle Scholar
  104. 104.
    Xu F, Schaefer M, Kida I et al. Simultaneous activation of mouse main and accessory olfactory bulbs by odors or pheromones. J Comp Neurol 2005; 489:491–500.PubMedCrossRefGoogle Scholar
  105. 105.
    Wang Z, Balet Sindreu C, Li V et al. Pheromone detection in male mice depends on signaling through the type 3 adenylyl cyclase in the main olfactory epithelium. J Neurosci 2006; 26:7375–7379.PubMedCrossRefGoogle Scholar
  106. 106.
    Mandiyan VS, Coats JK, Shah NM. Deficits in sexual and aggressive behaviors in Cnga2 mutant mice. Nat Neurosci 2005; 8:1660–1662.PubMedCrossRefGoogle Scholar
  107. 107.
    Lin W, Arellano J, Slotnick B et al. Odors detected by mice deficient in cyclic nucleotide-gated channel subunit A2 stimulate the main olfactory system. J Neurosci 2004; 24:3703–3710.PubMedCrossRefGoogle Scholar
  108. 108.
    Shi P, Zhang J. Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land. Genome Res 2007; 17:166–174.PubMedCrossRefGoogle Scholar
  109. 109.
    Rodriguez I, Greer CA, Mok MY et al. A putative pheromone receptor gene expressed in human olfactory mucosa. Nat Genet 2000; 26:18–19.PubMedCrossRefGoogle Scholar
  110. 110.
    Rodriguez I, Mombaerts P. Novel human vomeronasal receptor-like genes reveal species-specific families. Curr Biol 2002; 12:R409–R411.PubMedCrossRefGoogle Scholar
  111. 111.
    Halpern M, Martinez-Marcos A. Structure and function of the vomeronasal system: an update. Prog Neurobiol 2003; 70:245–318.PubMedCrossRefGoogle Scholar
  112. 112.
    Young JM, Trask BJ. V2R gene families degenerated in primates, dog and cow, but expanded in opossum. Trends Genet 2007; 23:212–215.PubMedCrossRefGoogle Scholar
  113. 113.
    Del Punta K, Puche A, Adams NC et al. A divergent pattern of sensory axonal projections is rendered convergent by second-order neurons in the accessory olfactory bulb. Neuron 2002; 35:1057–1066.PubMedCrossRefGoogle Scholar
  114. 114.
    Martini S, Silvotti L, Shirazi A et al. Co-expression of putative pheromone receptors in the sensory neurons of the vomeronasal organ. J Neurosci 2001; 21:843–848.PubMedGoogle Scholar
  115. 115.
    Lucas P, Ukhanov K, Leinders-Zufall T et al. A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 2003; 40:551–561.PubMedCrossRefGoogle Scholar
  116. 116.
    Spehr M, Hatt H, Wetzel CH. Arachidonic acid plays a role in rat vomeronasal signal transduction. J Neurosci 2002; 22:8429–8437.PubMedGoogle Scholar
  117. 117.
    Liman ER, Corey DP, Dulac C. TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci USA 1999; 96:5791–5796.PubMedCrossRefGoogle Scholar
  118. 118.
    Leypold BG, Yu CR, Leinders-Zufall T et al. Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci USA 2002; 99:6376–6381.PubMedCrossRefGoogle Scholar
  119. 119.
    Stowers L, Holy TE, Meister M et al. Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 2002; 295:1493–1500.PubMedCrossRefGoogle Scholar
  120. 120.
    Nodari F, Hsu FF, Fu X et al. Sulfated steroids as natural ligands of mouse pheromone-sensing neurons. J Neurosci 2008; 28:6407–6418.PubMedCrossRefGoogle Scholar
  121. 121.
    Kelliher KR, Spehr M, Li XH et al. Pheromonal recognition memory induced by TRPC2-independent vomeronasal sensing. Eur J Neurosci 2006; 23:3385–3390.PubMedCrossRefGoogle Scholar
  122. 122.
    Del Punta K, Leinders-Zufall T, Rodriguez I et al. Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature 2002; 419:70–74.PubMedCrossRefGoogle Scholar
  123. 123.
    Boschat C, Pelofi C, Randin O et al. Pheromone detection mediated by a V1r vomeronasal receptor. Nat Neurosci 2002; 5:1261–1262.PubMedCrossRefGoogle Scholar
  124. 124.
    Leinders-Zufall T, Lane AP, Puche AC et al. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 2000; 405:792–796.PubMedCrossRefGoogle Scholar
  125. 125.
    Krieger J, Schmitt A, Lobel D et al. Selective activation of G protein subtypes in the vomeronasal organ upon stimulation with urine-derived compounds. J Biol Chem 1999; 274:4655–4662.PubMedCrossRefGoogle Scholar
  126. 126.
    Chamero P, Marton TF, Logan DW et al. Identification of protein pheromones that promote aggressive behaviour. Nature 2007; 450:899–902.PubMedCrossRefGoogle Scholar
  127. 127.
    Leinders-Zufall T, Brennan P, Widmayer P et al. MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 2004; 306:1033–1037.PubMedCrossRefGoogle Scholar
  128. 128.
    He J, Ma L, Kim S et al. Encoding gender and individual information in the mouse vomeronasal organ. Science 2008; 320:535–538.PubMedCrossRefGoogle Scholar
  129. 129.
    Kimoto H, Haga S, Sato K et al. Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature 2005; 437:898–901.PubMedCrossRefGoogle Scholar
  130. 130.
    Kimoto H, Sato K, Nodari F et al. Sex-and strain-specific expression and vomeronasal activity of mouse ESP family peptides. Curr Biol 2007; 17:1879–1884.PubMedCrossRefGoogle Scholar
  131. 131.
    Sam M, Vora S, Malnic B et al. Neuropharmacology. Odorants may arouse instinctive behaviours. Nature 2001; 412:142.PubMedCrossRefGoogle Scholar
  132. 132.
    Trinh K, Storm DR. Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nat Neurosci 2003; 6:519–525.PubMedGoogle Scholar
  133. 133.
    Levai O, Feistel T, Breer H et al. Cells in the vomeronasal organ express odorant receptors but project to the accessory olfactory bulb. J Comp Neurol 2006; 498:476–490.PubMedCrossRefGoogle Scholar
  134. 134.
    Wagner S, Gresser AL, Torello AT et al. A multireceptor genetic approach uncovers an ordered integration of VNO sensory inputs in the accessory olfactory bulb. Neuron 2006; 50:697–709.PubMedCrossRefGoogle Scholar
  135. 135.
    Meredith M. Vomeronasal, olfactory, hormonal convergence in the brain. Cooperation or coincidence? Ann N Y Acad Sci 1998; 855:349–361.PubMedCrossRefGoogle Scholar
  136. 136.
    Spehr M, Spehr J, Ukhanov K et al. Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cell Mol Life Sci 2006; 63:1476–1484.PubMedCrossRefGoogle Scholar
  137. 137.
    Brennan PA, Zufall F. Pheromonal communication in vertebrates. Nature 2006; 444:308–315.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  • Minghong Ma
    • 1
  1. 1.Department of NeuroscienceUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations