Skip to main content

Transforming the Vestibular System One Molecule at a Time: The Molecular and Developmental Basis of Vertebrate Auditory Evolution

  • Chapter
Sensing in Nature

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 739))

Abstract

We review the molecular basis of auditory development and evolution. We propose that the auditory periphery (basilar papilla, organ of Corti) evolved by transforming a newly created and redundant vestibular (gravistatic) endorgan into a sensory epithelium that could respond to sound instead of gravity. Evolution altered this new epithelia’s mechanoreceptive properties through changes of hair cells, positioned the epithelium in a unique position near perilymphatic space to extract sound moving between the round and the oval window, and transformed its otolith covering into a tympanic membrane. Another important step in the evolution of an auditory system was the evolution of a unique set of “auditory neurons” that apparently evolved from vestibular neurons. Evolution of mammalian auditory (spiral ganglion) neurons coincides with GATA3 being a transcription factor found selectively in the auditory afferents. For the auditory information to be processed, the CNS required a dedicated center for auditory processing, the auditory nuclei. It is not known whether the auditory nucleus is ontogenetically related to the vestibular or electroreceptive nuclei, two sensory systems found in aquatic but not in amniotic vertebrates, or a de-novo formation of the rhombic lip in line with other novel hindbrain structures such as pontine nuclei. Like other novel hindbrain structures, the auditory nuclei express exclusively the bHLH gene Atoh1, and loss of Atoh1 results in loss of most of this nucleus in mice. Only after the basilar papilla, organ of Corti evolved could efferent neurons begin to modulate their activity. These auditory efferents most likely evolved from vestibular efferent neurons already present. The most simplistic interpretation of available data suggest that the ear, sensory neurons, auditory nucleus, and efferent neurons have been transformed by altering the developmental genetic modules necessary for their development into a novel direction conducive for sound extraction, conduction, and processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fritzsch B, Eberl DF, Beisel KW. The role of bHLH genes in ear development and evolution: revisiting a 10-year-old hypothesis. Cell Mol Life Sci 2010; 67(18):3089–3099.

    Article  PubMed  CAS  Google Scholar 

  2. Spring J, Yanze N, Josch C et al. Conservation of Brachyury, Mef2, and Snail in the myogenic lineage of jellyfish: a connection to the mesoderm of bilateria. Dev Biol 2002; 244(2):372–384.

    Article  PubMed  CAS  Google Scholar 

  3. Reichert C. Uber die Visceralbogen der Wirbeltiere im allgemeinen und deren Metamorphose bei den Vogeln und Saugetieren. Arch Anat Physiol 1837; 120–222.

    Google Scholar 

  4. Gaupp E. Ontogenese und Phylogenese des schalleitenden Apparates bei den Wirbeltieren. Erg Anat Entwicklungsgesch 1898; (8):990–1149.

    Google Scholar 

  5. Knoll AH, Carroll SB. Early animal evolution: emerging views from comparative biology and geology. Science 1999; 284(5423):2129–2137.

    Article  PubMed  CAS  Google Scholar 

  6. Clack J. The stapes of Acanthostega gunnari and the role of the stapes in early tetrapods. In: DB W, AN P, Fay RR. eds. The Evolutionary Biology of Hearing. New York: Springer-Verlag 1992; 405–419.

    Google Scholar 

  7. Jarvik E. Basic Structure and Evolution of Vertebrates, Vol. 1. London: Academic Press; 1980.

    Google Scholar 

  8. Carrol R. Vertebrate Palaeontology and Evolution. New York: Freeman; 1988.

    Google Scholar 

  9. Thewissen JG, Cohn MJ, Stevens LS et al. Developmental basis for hind-limb loss in dolphins and origin of the cetacean bodyplan. Proc Natl Acad Sci U S A 2006; 103(22):8414–8418.

    Article  PubMed  CAS  Google Scholar 

  10. Eberl DF, Boekhoff-Falk G. Development of Johnston’s organ in Drosophila. Int J Dev Biol 2007; 51(6–7):679–687.

    Article  Google Scholar 

  11. Budelmann B. Morphological diversity of equilibirum receptor systems in aquatic invertebrates. In: Atema J, Popper AN, Tavolga W, eds. Sensory Biology of Aquatic Animals. New York: Springer-Verlag 1987; 757–782.

    Google Scholar 

  12. Fritzsch B, Beisel KW, Pauley S et al. Molecular evolution of the vertebrate mechanosensory cell and ear. Int J Dev Biol 2007; 51(6–7):663–678.

    Article  PubMed  CAS  Google Scholar 

  13. Ayers H. Vertebrate cephalogensis. Journal of Morphology 1892; 6:1–360.

    Article  Google Scholar 

  14. van Bergeijk WA. The evolution of vertebrate hearing. In: Neff WD, ed. Contributions to Sensory Physiology. Vol 2. Berlin and New York: Springer-Verlag 1967; 1–49.

    Google Scholar 

  15. Streit A. The preplacodal region: an ectodermal domain with multipotential progenitors that contribute to sense organs and cranial sensory ganglia. Int J Dev Biol 2007; 51(6–7):447–461.

    Article  PubMed  CAS  Google Scholar 

  16. Groves AK, Bronner-Fraser M. Competence, specification and commitment in otic placode induction. Development 2000; 127(16):3489–3499.

    PubMed  CAS  Google Scholar 

  17. Fritzsch B, Barald K, Lomax M. Early embryology of the vertebrate ear. In: Rubel EW, Popper AN, Fay RR, eds. Development of the Auditory System. New York: Springer-Verlag 1998; 80–145.

    Chapter  Google Scholar 

  18. Burighel P, Caicci F, Zaniolo G et al. Does hair cell differentiation predate the vertebrate appearance? Brain Res Bull 2008; 75(2–4):331–334.

    Article  PubMed  Google Scholar 

  19. Padanad MS, Riley BB. Pax2/8 proteins coordinate sequential induction of otic and epibranchial placodes through differential regulation of foxi1, sox3 and fgf24. Dev Biol. 2011; 351(1):90–98.

    Article  PubMed  CAS  Google Scholar 

  20. Bouchard M, de Caprona D, Busslinger M et al. Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev Biol 2010; 10:89.

    Article  PubMed  Google Scholar 

  21. Li H, Liu H, Corrales CE et al. Correlation of Pax-2 expression with cell proliferation in the developing chicken inner ear. J Neurobiol 2004; 60(1):61–70.

    Article  PubMed  CAS  Google Scholar 

  22. Halder G, Callaerts P, Gehring WJ. New perspectives on eye evolution. Curr Opin Genet Dev 1995; 5(5):602–609.

    Article  PubMed  CAS  Google Scholar 

  23. Fritzsch B, Beisel KW. Molecular conservation and novelties in vertebrate ear development. Curr Top Dev Biol 2003; 57:1–44.

    Article  PubMed  CAS  Google Scholar 

  24. Pierce ML, Weston MD, Fritzsch B et al. MicroRNA-183 family conservation and ciliated neurosensory organ expression. Evol Dev 2008; 10(1):106–113.

    Article  PubMed  CAS  Google Scholar 

  25. Fritzsch B, Wake MH. The inner-ear of gymnophione amphibians and its nerve supply a comparative-study of regressive events in a complex sensory system (amphibia, gymnophiona). Zoomorphology 1988; 108(4):201–217.

    Article  Google Scholar 

  26. Fritzsch B, Beisel KW, Jones K et al. Development and evolution of inner ear sensory epithelia and their innervation. J Neurobiol 2002; 53(2):143–156.

    Article  PubMed  CAS  Google Scholar 

  27. Norris HW. Studies on the development of the ear in Amblystoma I. Developemnt of the auditory vesicle. Journal of Morphology 1892; 7:23–34.

    Article  Google Scholar 

  28. Nichols DH, Pauley S, Jahan I et al. Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis. Cell Tissue Res 2008; 334(3):339–358.

    Article  PubMed  CAS  Google Scholar 

  29. Tomsa JM, Langeland JA. Otx expression during lamprey embryogenesis provides insights into the evolution of the vertebrate head and jaw. Dev Biol 1999; 207(1):26–37.

    Article  PubMed  CAS  Google Scholar 

  30. Mazan S, Jaillard D, Baratte B et al. Otx1 gene-controlled morphogenesis of the horizontal semicircular canal and the origin of the gnathostome characteristics. Evol Dev 2000; 2(4):186–193.

    Article  PubMed  CAS  Google Scholar 

  31. Fritzsch B, Signore M, Simeone A. Otx1 null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears. Dev Genes Evol 2001; 211(8–9):388–396.

    Article  PubMed  CAS  Google Scholar 

  32. Pauley S, Lai E, Fritzsch B. Foxg1 is required for morphogenesis and histogenesis of the mammalian inner ear. Dev Dyn 2006; 235(9):2470–2482.

    Article  PubMed  CAS  Google Scholar 

  33. Wever EG. The evolution of vertebrate hearing. In: Keidel WD, Neff WD, eds. Auditory System Vol V.1 1974; 423–454.

    Google Scholar 

  34. Fritzsch B. Hearing in two worlds: Theoretical and realistic adaptive changes of the aquatic and terrectrial ear for sound reception. In: Fay RR, Popper AN, eds. Comparative Hearing: Fish and Amphibians. New York: Springer-Verlag 1999; 15–42.

    Chapter  Google Scholar 

  35. Fritzsch B. The water-to-land transition: Evolution ofthe tetrapod basilar papilla, middle ear and auditory nuclei. The Evolutionary Biology of Hearing. New York: Springer Verlag 1992; 351–375.

    Chapter  Google Scholar 

  36. Farinas I, Jones KR, Tessarollo L et al. Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J Neurosci 2001; 21(16):6170–6180.

    PubMed  CAS  Google Scholar 

  37. Morsli H, Choo D, Ryan A et al. Development of the mouse inner ear and origin of its sensory organs. J Neurosci 1998; 18(9):3327–3335.

    PubMed  CAS  Google Scholar 

  38. Cole LK, Le Roux I, Nunes F et al. Sensory organ generation in the chicken inner ear: contributions of bone morphogenetic protein 4, serrate1 and lunatic fringe. J Comp Neurol 2000; 424(3):509–520.

    Article  PubMed  CAS  Google Scholar 

  39. Fritzsch B. On the role played by ontogenetic remodeling and functional transformation in the evolution of terrestrial hearing. Brain Behav Evol 1997; 50(1):38–49.

    Article  PubMed  CAS  Google Scholar 

  40. Kopecky B, Santi P, Johnson S et al. Conditional deletion of N-myc distrupts neurosensory and non-sensory development of the ear. Devlopmental Dynamics 2011 In Press.

    Google Scholar 

  41. Qian D, Jones C, Rzadzinska A et al. Wnt5a functions in planar cell polarity regulation in mice. Dev Biol 2007; 306(1):121–133.

    Article  PubMed  CAS  Google Scholar 

  42. Ladher RK, Wright TJ, Moon AM et al. FGF8 initiates inner ear induction in chick and mouse. Genes Dev 2005; 19(5):603–613.

    Article  PubMed  CAS  Google Scholar 

  43. Jacques BE, Montcouquiol ME, Layman EM et al. Fgf8 induces pillar cell fate and regulates cellular patterning in the mammalian cochlea. Development 2007; 134(16):3021–3029.

    Article  PubMed  CAS  Google Scholar 

  44. Pirvola U, Ylikoski J, Trokovic R et al. FGFR1 is required for the development of the auditory sensory epithelium. Neuron 2002; 35(4):671–680.

    Article  PubMed  CAS  Google Scholar 

  45. Duncan JS, Lim KC, Engel JD et al. Limited inner ear morphogenesis and neurosensory development are possible in the absence of Gata3. Int J Dev Biol 2011 (accepted).

    Google Scholar 

  46. Fritzsch B. Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia. Brain Res Bull 2003; 60(5–6):423–433.

    Article  PubMed  Google Scholar 

  47. Bell D, Streit A, Gorospe I et al. Spatial and temporal segregation of auditory and vestibular neurons in the otic placode. Dev Biol 2008; 322(1):109–120.

    Article  PubMed  CAS  Google Scholar 

  48. Ma Q, Anderson DJ, Fritzsch B. Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. Journal of the Association for Research in Otolaryngology: JARO 2000; 1(2):129–143.

    Article  PubMed  CAS  Google Scholar 

  49. Satoh T, Fekete DM. Clonal analysis of the relationships between mechanosensory cells and the neurons that innervate them in the chicken ear. Development 2005; 132(7):1687–1697.

    Article  PubMed  CAS  Google Scholar 

  50. Raft S, Koundakjian EJ, Quinones H et al. Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development. Development 2007; 134(24):4405–4415.

    Article  PubMed  CAS  Google Scholar 

  51. Tessarollo L, Coppola V, Fritzsch B. NT-3 replacement with brain-derived neurotrophic factor redirects vestibular nerve fibers to the cochlea. J Neurosci 2004; 24(10):2575–2584.

    Article  PubMed  CAS  Google Scholar 

  52. Jahan I, Pan N, Kersigo J et al. Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea. PLoS One 2010; 5(7):e11661.

    Article  PubMed  Google Scholar 

  53. Striedter G. Principles of Brain Evolution. Sunderland MA: Sinauer Associates; 2004.

    Google Scholar 

  54. Fritzsch B. Experimental reorganization in the alar plate of the clawed toad, Xenopus laevis. I. Quantitative and qualitative effects of embryonic otocyst extirpation. Brain Res Dev Brain Res 1990; 51(1):113–122.

    Article  PubMed  CAS  Google Scholar 

  55. Bullock TH, Heiligenberg W. Electroreception. New York: Wiley and Sons; 1986.

    Google Scholar 

  56. Fritzsch B. The pattern of lateral-line afferents in urodeles. A horseradish-peroxidase study. Cell Tissue Res 1981; 218(3):581–594.

    Article  PubMed  CAS  Google Scholar 

  57. Fritzsch B, Ryan M, Wilczynski W et al, eds. The evolution of the amphibian auditory system. New York: Wiley & Sons 1988.

    Google Scholar 

  58. McCormick CA. Anatomy of the central auditory pathways of fish and amphibians. In: Popper AN, Fay RR, eds. Comparative Hearing: Fish and Amphibians. New York: Springer-Verlag 1999; 155–217.

    Chapter  Google Scholar 

  59. Rubel EW, Fritzsch B. Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 2002; 25:51–101.

    Article  PubMed  CAS  Google Scholar 

  60. Levi-Montalcini R. The development to the acousticovestibular centers in the chick embryo in the absence of the afferent root fibers and of descending fiber tracts. J Comp Neurol 1949; 91(2):209–241, illust, incl 203 pl.

    Article  PubMed  CAS  Google Scholar 

  61. Elliott KL, Fritzsch B. Transplantation of Xenopus laevis ears reveals the ability to form afferent and efferent connections with the spinal cord. Int J Dev Biol 2010; 54(10):1443–1451.

    Article  PubMed  Google Scholar 

  62. Bermingham NA, Hassan BA, Price SD et al. Math1: an essential gene for the generation of inner ear hair cells. Science 1999; 284(5421):1837–1841.

    Article  PubMed  CAS  Google Scholar 

  63. Liu M, Pereira FA, Price SD et al. Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev 2000; 14(22):2839–2854.

    Article  PubMed  CAS  Google Scholar 

  64. Kim WY, Fritzsch B, Serls A et al. NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development 2001; 128(3):417–426.

    PubMed  CAS  Google Scholar 

  65. Maricich SM, Xia A, Mathes EL et al. Atoh1-lineal neurons are required for hearing and for the survival of neurons in the spiral ganglion and brainstem accessory auditory nuclei. J Neurosci 2009; 29(36):11123–11133.

    Article  PubMed  CAS  Google Scholar 

  66. Roberts BL, Meredith GE. The efferent innervation of the ear: Variations on an enigma. New York: Springer-Verlag; 1992.

    Google Scholar 

  67. Fritzsch B. Ontogenetic and Evolutionary evidence for the motoneuron nature of vestibular and cochlear efferents. In: Berlin C, ed. The Efferent Auditory System: Basic Science and Clinical Applications: Singular Publishing Group, Inc, 1999; 31.

    Google Scholar 

  68. Simmons D, Duncan J, Caprona DC et al. Development of the inner ear efferent system. Auditory and Vestibular Efferents Vol 38. New York: Springer 2011; 187–216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy S. Duncan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Duncan, J.S., Fritzsch, B. (2012). Transforming the Vestibular System One Molecule at a Time: The Molecular and Developmental Basis of Vertebrate Auditory Evolution. In: López-Larrea, C. (eds) Sensing in Nature. Advances in Experimental Medicine and Biology, vol 739. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1704-0_11

Download citation

Publish with us

Policies and ethics