Skip to main content

Thermosensorsy Stems in Eubacteria

  • Chapter
Book cover Sensing in Nature

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 739))

Abstract

Four different mechanisms have evolved in eubacteria to comply with changes in the environmental temperature. The underlying genetic mechanisms regulate gene expression at transcriptional, translational and posttranslational level. The high temperature response (HTR) is a reaction on increases in temperature and is mainly used by pathogenic bacteria when they enter their mammalian host. The temperature of 37°C causes induction of the virulent genes the products of which are only needed in this environment. The heat shock response (HSR) is induced by any sudden increase in temperature, allows the bacterial cell to adapt to this environmental stress factor and is shut off after adaptation. In a similar way the low temperature response (LTR) is a reaction to a new environment and leads to the constant expression of appropriate genes. In contrast, the cold shock response (CSR) includes turn off of the cold shock genes after adaptation to the low temperature. Sensors of temperature changes are specific DNA regions, RNA molecules or proteins and conformational changes have been identified as a common motif.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Storz G, Hengge-Aronis R. Bacterial Stress Responses. Washington, DC: American Society for Microbiology, 2000.

    Google Scholar 

  2. Narberhaus F, Waldminghaus T, Chowdhury S. RNA thermometers. FEMS Microbiol Rev 2006; 30:3–16.

    PubMed  CAS  Google Scholar 

  3. Schumann W. Regulation of the heat shock response in Escherichia coli and Bacillus subtilis. J Biosci 1996; 21:133–148.

    CAS  Google Scholar 

  4. Guisbert E, Yura T, Rhodius VA et al. Convergence of molecular, modeling and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol Mol Biol Rev 2008; 72:545–554.

    PubMed  CAS  Google Scholar 

  5. Schumann W. Temperature sensors of eubacteria. Adv Appl Microbiol 2009; 67:213–256.

    PubMed  CAS  Google Scholar 

  6. Klinkert B, Narberhaus F. Microbial thermosensors. Cell Mol Life Sci 2009; 66:2661–2676.

    PubMed  CAS  Google Scholar 

  7. Lopez-Garcia P, Forterre P. DNA topology and the thermal stress response, a tale from mesophiles and hyperthermophiles. BioEssays 2000; 22:738–746.

    PubMed  CAS  Google Scholar 

  8. Kataoka K, Mizushima T, Ogata Y et al. Heat shock-induced DNA relaxation in vitro by DNA gyrase of Escherichia coli in the presence of ATP. J Biol Chem 1996; 271:24806–24810.

    PubMed  CAS  Google Scholar 

  9. Mizushima T, Kataoka K, Ogata Y et al. Increase in negative supercoiling of plasmid DNA in Escherichia coli exposed to cold shock. Mol Microbiol 1997; 23:381–386.

    PubMed  CAS  Google Scholar 

  10. Pruss GJ, Drlica K. DNA supercoiling and prokaryotic transcription. Cell 1989; 56:521-523. 11. Mizuno T. Random cloning of bent DNA segments from Escherichia coli chromosome and primary characterization of their structures. Nucleic Acids Res 1987; 15:6827–6841.

    Google Scholar 

  11. Nickerson CA, Achberger EC. Role of curved DNA in binding of Escherichia coli RNA polymerase to promoters. J Bacteriol 1995; 177:5756–5761.

    PubMed  CAS  Google Scholar 

  12. Katayama S, Matsushita O, Tamai E et al. Phased A-tracts bind to the alpha subunit of RNA polymerase with increased affinity at low temperature. FEBS Lett 2001; 509:235–238.

    PubMed  CAS  Google Scholar 

  13. Katayama S, Matsushita O, Jung CM et al. Promoter upstream bent DNA activates the transcription of the Clostridium perfringens phospholipase C gene in a low temperature-dependent manner. EMBO J 1999; 18:3442–3450.

    PubMed  CAS  Google Scholar 

  14. Maurelli AT, Baudry B, d’Hauteville H et al. Cloning of plasmid DNA sequences involved in invasion of HeLa cells by Shigella flexneri. Infect Immun 1985; 49:164–171.

    PubMed  CAS  Google Scholar 

  15. Sasakawa C, Kamata K, Sakai T et al. Virulence-associated genetic regions comprising 31 kilobases of the 230-kilobase plasmid in Shigella flexneri 2a. J Bacteriol 1988; 170:2480–2484.

    PubMed  CAS  Google Scholar 

  16. Sansonetti PJ, Hale TL, Dammin GJ et al. Alterations in the pathogenicity of Escherichia coli K-12 after transfer of plasmid and chromosomal genes from Shigella flexneri. Infect Immun 1983; 39:1392–1402.

    PubMed  CAS  Google Scholar 

  17. Maurelli AT, Blackmon B, Curtiss R III. Temperature-dependent expression of virulence genes in Shigella species. Infect Immun 1984; 43:195–201.

    PubMed  CAS  Google Scholar 

  18. Maurelli AT, Sansonetti PJ. Identification of a chromosomal gene controlling temperature-regulated expression of Shigella virulence. Proc Natl Acad Sci USA 1988; 85:2820–2824.

    PubMed  CAS  Google Scholar 

  19. Falconi M, Colonna B, Prosseda G et al. Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J 1998; 17:7033–7043.

    PubMed  CAS  Google Scholar 

  20. Prosseda G, Falconi M, Giangrossi M et al. The virF promoter in Shigella: more than just a curved DNA stretch. Mol Microbiol 2004; 51:523–537.

    PubMed  CAS  Google Scholar 

  21. Dame RT. The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol Microbiol 2005; 56:858–870.

    PubMed  CAS  Google Scholar 

  22. Dorman CJ. H-NS: a universal regulator for a dynamic genome. Nat Rev Microbiol 2004; 2:391–400.

    PubMed  CAS  Google Scholar 

  23. Ono S, Goldberg MD, Olsson T et al. H-NS is a part of a thermally controlled mechanism for bacterial gene regulation. Biochem J 2005; 391:203–213.

    PubMed  CAS  Google Scholar 

  24. Atlung T, Ingmer H. H-NS: a modulator of environmentally regulated gene expression. Mol Microbiol 1997; 24:7–17.

    PubMed  CAS  Google Scholar 

  25. Colonna B, Casalino M, Fradiani PA et al. H-NS regulation of virulence gene expression in enteroinvasive Escherichia coli harboring the virulence plasmid integrated into the host chromosome. J Bacteriol 1995; 177:4703–4712.

    PubMed  CAS  Google Scholar 

  26. Rohde JR, Luan XS, Rohde H et al. The Yersinia enterocolitica pYV virulence plasmid contains multiple intrinsic DNA bends which melt at 37°C. J Bacteriol 1999; 181:4198–4204.

    PubMed  CAS  Google Scholar 

  27. Madrid C, Nieto JM, Paytubi S et al. Temperature-and H-NS-dependent regulation of a plasmid-encoded virulence operon expressing Escherichia coli hemolysin. J Bacteriol 2002; 184:5058–5066.

    PubMed  CAS  Google Scholar 

  28. Tobe T, Yoshikawa M, Mizuno T et al. Transcriptional control of the invasion regulatory gene virB of Shigella flexneri: activation by virF and repression by H-NS. J Bacteriol 1993; 175:6142–6149.

    PubMed  CAS  Google Scholar 

  29. Goransson M, Uhlin BE. Environmental temperature regulates transcription of a virulence pili operon in E. coli. EMBO J 1984; 3:2885–2888.

    PubMed  CAS  Google Scholar 

  30. White-Ziegler CA, Low DA. Thermoregulation of the pap operon: evidence for the involvement of RimJ, the N-terminal acetylase of ribosomal protein S5. J Bacteriol 1992; 174:7003–7012.

    PubMed  CAS  Google Scholar 

  31. Blyn LB, Braaten BA, White-Ziegler CA et al. Phase-variation of pyelonephritis-associated piliin Escherichia coli: evidence for transcriptional regulation. EMBO J 1989; 8:613–620.

    PubMed  CAS  Google Scholar 

  32. Goransson M, Sonden B, Nilsson P et al. Transcriptional silencing and thermoregulation of gene expression in Escherichia coli. Nature 1990; 344:682–685.

    PubMed  CAS  Google Scholar 

  33. White-Ziegler CA, Blyn LB, Braaten BA et al. Identification of an Escherichia coli genetic locus involved in thermoregulation of the pap operon. J Bacteriol 1990; 172:1775–1782.

    PubMed  CAS  Google Scholar 

  34. Cumberlidge AG, Isono K. Ribosomal protein modification in Escherichia coli. I. A mutant lacking the N-terminal acetylation of protein S5 exhibits thermosensitivity. J Mol Biol 1979; 131:169–189.

    PubMed  CAS  Google Scholar 

  35. White-Ziegler CA, Black AM, Eliades SH et al. The N-acetyltransferase RimJ responds to environmental stimuli to repress pap fimbrial transcription in Escherichia coli. J Bacteriol 2002; 184:4334–4342.

    PubMed  CAS  Google Scholar 

  36. Ochman H, Soncini FC, Solomon F et al. Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci USA 1996; 93:7800–7104.

    PubMed  CAS  Google Scholar 

  37. Shea JE, Hensel M, Gleeson C et al. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci USA 1996; 93:2593–2597.

    PubMed  CAS  Google Scholar 

  38. Duong N, Osborne S, Bustamante VH et al. Thermosensing co-ordinates a cis-regulatory module for transcriptional activation of the intracellular virulence system in Salmonella enterica serovar Typhimurium. J Biol Chem 2007; 282:34077–34084.

    PubMed  CAS  Google Scholar 

  39. Morita MT, Tanaka Y, Kodama TS et al. Translational induction of heat shock transcription factor σ32: evidence for a built-in RNA thermosensor. Genes Dev 1999; 13:655–665.

    PubMed  CAS  Google Scholar 

  40. Nocker A, Hausherr T, Balsiger S et al. A mRNA-based thermosensor controls expression of rhizobial heat shock genes. Nucleic Acids Res 2001; 29:4800–4807.

    PubMed  CAS  Google Scholar 

  41. Yamanaka K, Inouye M. Mutational analysis of the 5′ untranslated region of the cold shock cspA mRNA of Escherichia coli. J Bacteriol 1999; 181:6284–6291.

    PubMed  CAS  Google Scholar 

  42. Altuvia S, Kornitzer D, Teff D et al. Alternative mRNA structures of the cIII gene of bacteriophage λ determine the rate of its translation initiation. J Mol Biol 1989; 210:265–280.

    PubMed  CAS  Google Scholar 

  43. Yura T, Nakahigashi K. Regulation of the heat-shock response. Curr Opin Microbiol 1999; 2:153–158.

    PubMed  CAS  Google Scholar 

  44. Narberhaus F, Käser R, Nocker A et al. A novel DNA element that controls bacterial heat shock gene expression. Mol Microbiol 1998; 28:315–323.

    PubMed  CAS  Google Scholar 

  45. Balsiger S, Ragaz C, Baron C et al. Replicon-specific regulation of small heat shock genes in Agrobacterium tumefaciens. J Bacteriol 2004; 186:6824–6829.

    PubMed  CAS  Google Scholar 

  46. Waldminghaus T, Heidrich N, Brantl S et al. FourU: a novel type of RNA thermometer in Salmonella. Mol Microbiol 2007; 65:413–424.

    PubMed  CAS  Google Scholar 

  47. Hoe NP, Goguen JD. Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. J Bacteriol 1993; 175:7901–7909.

    PubMed  CAS  Google Scholar 

  48. Jones PG, VanBogelen RA, Neidhardt FC. Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol 1987; 169:2092–2095.

    PubMed  CAS  Google Scholar 

  49. Goldstein J, Pollitt NS, Inouye M. Major cold shock protein of Escherichia coli. Proc Natl Acad Sci USA 1990; 87:283–287.

    PubMed  CAS  Google Scholar 

  50. Jiang W, Hou Y, Inouye M. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 1997; 272:196–202.

    PubMed  CAS  Google Scholar 

  51. Goldenberg D, Azar I, Oppenheim AB. Differential mRNA stability of the cspA gene in the cold-shock response of Escherichia coli. Mol Microbiol 1996; 19:241–248.

    PubMed  CAS  Google Scholar 

  52. Fang L, Jiang W, Bae W et al. Promoter-independent cold-shock induction of cspA and its derepression at 37°C by mRNA stabilization. Mol Microbiol 1997; 23:355–364.

    PubMed  CAS  Google Scholar 

  53. Zangrossi S, Briani F, Ghisotti D et al. Transcriptional and posttranscriptional control of polynucleotide phosphorylase during cold acclimation in Escherichia coli. Mol Microbiol 2000; 36:1470–1480.

    PubMed  CAS  Google Scholar 

  54. Lybecker MC, Samuels DS. Temperature-induced regulation of RpoS by a small RNA in Borrelia burgdorferi. Mol Microbiol 2007; 64:1075–1089.

    PubMed  CAS  Google Scholar 

  55. Herman C, Thévenet D, D’Ari R et al. The HflB protease of Escherichia coli degrades its inhibitor λcIII. J Bacteriol 1997; 179:358–363.

    PubMed  CAS  Google Scholar 

  56. Shotland Y, Koby S, Teff D et al. Proteolysis of the phage lambda CII regulatory protein by FtsH (HflB) of Escherichia coli. Mol Microbiol 1997; 24:1303–1310.

    PubMed  CAS  Google Scholar 

  57. Hengge-Aronis R. Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 2002; 66:373–395.

    PubMed  CAS  Google Scholar 

  58. Sledjeski DD, Gupta A, Gottesman S. The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. EMBO J 1996; 15:3993–4000.

    PubMed  CAS  Google Scholar 

  59. Majdalani N, Cunning C, Sledjeski D et al. DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc Natl Acad Sci USA 1998; 95:12462–12467.

    PubMed  CAS  Google Scholar 

  60. Repoila F, Gottesman S. Signal transduction cascade for regulation of RpoS: temperature regulation of DsrA. J Bacteriol 2001; 183:4012–4023.

    PubMed  CAS  Google Scholar 

  61. Repoila F, Gottesman S. Temperature sensing by the dsrA promoter. J Bacteriol 2003; 185:6609–6614.

    PubMed  CAS  Google Scholar 

  62. Gulig PA, Curtiss R III. Plasmid-associated virulence of Salmonella typhimurium. Infect Immun 1987; 55:2891–2901.

    PubMed  CAS  Google Scholar 

  63. Koski P, Saarilahti H, Sukupolvi S et al. A new alpha-helical coiled coil protein encoded by the Salmonella typhimurium virulence plasmid. J Biol Chem 1992; 267:12258–12265.

    PubMed  CAS  Google Scholar 

  64. Hurme R, Namork E, Nurmiaho-Lassila EL et al. Intermediate filament-like network formed in vitro by a bacterial coiled coil protein. J Biol Chem 1994; 269:10675–10682.

    PubMed  CAS  Google Scholar 

  65. Hurme R, Berndt KD, Namok E et al. DNA binding exerted by a bacterial gene regulator with an extensive coiled-coil domain. J Biol Chem 1996; 271:12626–12631.

    PubMed  CAS  Google Scholar 

  66. Gal-Mor O, Valdez Y, Finlay BB. The temperature-sensing protein TlpA is repressed by PhoP and dispensable for virulence of Salmonella enterica serovar Typhimurium in mice. Microbes Infect 2006; 8:2154–2162.

    PubMed  CAS  Google Scholar 

  67. Servant P, Rapoport G, Mazodier P. RheA, the repressor of hsp18 in Streptomyces albus G. Microbiology 1999; 145:2385–2391.

    PubMed  CAS  Google Scholar 

  68. Servant P, Grandvalet C, Mazodier P. The RheA repressor is the thermosensor of the hsp18 heat shock response in Streptomyces albus. Proc Natl Acad Sci USA 2000; 97:3538–3543.

    PubMed  CAS  Google Scholar 

  69. Jackson MW, Silva-Herzog E, Plano GV. The ATP-dependent ClpXP and Lon proteases regulate expression of the Yersinia pestis type III secretion system via regulated proteolysis of YmoA, a small histone-like protein. Mol Microbiol 2004; 54:1364–1378.

    PubMed  CAS  Google Scholar 

  70. Beier D, Gross R. Regulation of bacterial virulence by two-component systems. Curr Opin Microbiol 2006; 9:143–152.

    PubMed  CAS  Google Scholar 

  71. Konkel ME, Tilly K. Temperature-regulated expression of bacterial virulence genes. Microbes Infect 2000; 2:157–166.

    PubMed  CAS  Google Scholar 

  72. Clausen T, Southan C, Ehrmann M. The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell 2004; 10:443–455.

    Google Scholar 

  73. Spiess C, Beil A, Ehrmann M. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 1999; 97:339–347.

    PubMed  CAS  Google Scholar 

  74. Krojer T, Pangerl K, Kurt J et al. Interplay of PDZ and protease domain of DegP ensures efficient elimination of misfolded proteins. Proc Natl Acad Sci USA 2008; 105:7702–7707.

    PubMed  CAS  Google Scholar 

  75. Tatsuta T, Tomoyasu T, Bukau B et al. Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of 132 in vivo. Mol Microbiol 1998; 30:583–594.

    PubMed  CAS  Google Scholar 

  76. Rodriguez F, Rsene-Ploetze F, Rist W et al. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Mol Cell 2008; 32:347–358.

    PubMed  CAS  Google Scholar 

  77. Homuth G, Masuda S, Mogk A et al. The dnaK operon of Bacillus subtilis is heptacistronic. J Bacteriol 1997; 179:1153–1164.

    PubMed  CAS  Google Scholar 

  78. Schmidt A, Schiesswohl M, Völker U et al. Cloning, sequencing, mapping and transcriptional analysis of the groESL operon from Bacillus subtilis. J Bacteriol 1992; 174:3993–3999.

    PubMed  CAS  Google Scholar 

  79. Zuber U, Schumann W. CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol 1994; 176:1359–1363.

    PubMed  CAS  Google Scholar 

  80. Mogk A, Homuth G, Scholz C et al. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J 1997; 16:4579–4590.

    PubMed  CAS  Google Scholar 

  81. Reischl S, Wiegert T, Schumann W. Isolation and analysis of mutant alleles of the Bacillus subtilis HrcA repressor with reduced dependency on GroE function. J Biol Chem 2002; 277:32659–32667.

    PubMed  CAS  Google Scholar 

  82. Bucca G, Smith CP, Alberti M et al. Cloning and sequencing of the dnaK region of Streptomyces coelicolor A3(2). Gene 1993; 130:141–144.

    PubMed  CAS  Google Scholar 

  83. Bucca G, Brassington AME, Schönfeld H-J et al. The HspR regulon of Streptomyces coelicolor: a role for the DnaK chaperone as a transcriptional corepressor. Mol Microbiol 2000; 38:1093–1103.

    PubMed  CAS  Google Scholar 

  84. Alba BM, Zhong HJ, Pelayo JC et al. DegS (hhoB) is an essential Escherichia coli gene whose indispensable function is to provide σE activity. Mol Microbiol 2001; 40:1323–1333.

    PubMed  CAS  Google Scholar 

  85. Doyle DA, Lee A, Lewis J et al. Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 1996; 85:1067–1076.

    PubMed  CAS  Google Scholar 

  86. De Las Peñas A, Connolly L, Gross CA. The σE-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of σE. Mol Microbiol 1997; 24:373–385.

    Google Scholar 

  87. Missiakas D, Mayer MP, Lemaire M et al. Modulation of the Escherichia coli σE (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins. Mol Microbiol 1997; 24:355–371.

    PubMed  CAS  Google Scholar 

  88. Walsh NP, Alba BM, Bose B et al. OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 2003; 113:61–71.

    PubMed  CAS  Google Scholar 

  89. Alba BM, Leeds JA, Onufryk C et al. DegS and YaeL participate sequentially in the cleavage of RseA to activate the σE-dependent extracytoplasmic stress response. Genes Dev 2002; 16:2156–2168.

    PubMed  CAS  Google Scholar 

  90. Kanehara K, Ito K, Akiyama Y. YaeL (EcfE) activates the σE pathway of stress response through a site-2 cleavage of anti-σE, RseA. Genes Dev 2002; 16:2147–2155.

    PubMed  CAS  Google Scholar 

  91. Gelvin SB. Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol Biol 2000; 51:223–256.

    PubMed  CAS  Google Scholar 

  92. Jin S, Song YN, Deng WY et al. The regulatory VirA protein of Agrobacterium tumefaciens does not function at elevated temperatures. J Bacteriol 1993; 175:6830–6835.

    PubMed  CAS  Google Scholar 

  93. Merrick MJ. In a class of its own—the RNA polymerase sigma factor σ54 (σN). Mol Microbiol 1993; 10:903–909.

    PubMed  CAS  Google Scholar 

  94. Lee HS, Berger DK, Kustu S. Activity of purified NIFA, a transcriptional activator of nitrogen fixation genes. Proc Natl Acad Sci USA 1993; 90:2266–2270.

    PubMed  CAS  Google Scholar 

  95. Gu J, Yu G, Zhu J et al. The N-terminal domain of NifA determines the temperature sensitivity of NifA in Klebsiella pneumoniae and Enterobacter cloacae. Sci China C Life Sci 2000; 43:8–15.

    PubMed  CAS  Google Scholar 

  96. Peel M, Donachie W, Shaw A. Physical and antigenic heterogeneity in the flagellins of Listeria monocytogenes and L. ivanovii. J Gen Microbiol 1988; 134:2593–2598.

    PubMed  CAS  Google Scholar 

  97. Williams T, Joseph B, Beier D et al. Response regulator DegU of Listeria monocytogenes regulates the expression of flagella-specific genes. FEMS Microbiol Lett 2005; 252:287–298.

    PubMed  CAS  Google Scholar 

  98. Dons L, Rasmussen OF, Olsen JE. Cloning and characterization of a gene encoding flagellin of Listeria monocytogenes. Mol Microbiol 1992; 6:2919–2929.

    PubMed  CAS  Google Scholar 

  99. Mauder N, Williams T, Fritsch F et al. Response regulator DegU of Listeria monocytogenes controls temperature-responsive flagellar gene expression in its unphosphorylated state. J Bacteriol 2008; 190:4777–4781.

    PubMed  CAS  Google Scholar 

  100. Dons L, Eriksson E, Jin Y et al. Role of flagellin and the two-component CheA/CheY system of Listeria monocytogenes in host cell invasion and virulence. Infect Immun 2004; 72:3237–3244.

    PubMed  CAS  Google Scholar 

  101. Way SS, Thompson LJ, Lopes JE et al. Characterization of flagellin expression and its role in Listeria monocytogenes infection and immunity. Cell Microbiol 2004; 6:235–242.

    PubMed  CAS  Google Scholar 

  102. Yamanaka K. Cold shock response in Escherichia coli. J Mol Microbiol Biotechnol 1999; 1:193–202.

    PubMed  CAS  Google Scholar 

  103. Aguilar PS, Cronan JE Jr, De Mendoza D. A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J Bacteriol 1998; 180:2194–2200.

    PubMed  CAS  Google Scholar 

  104. Aguilar PS, Hernandez-Arriaga AM, Cybulski LE et al. Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J 2001; 20:1681–1691.

    PubMed  CAS  Google Scholar 

  105. Albanesi D, Martin M, Trajtenberg F et al. Structural plasticity and catalysis regulation of a thermosensor histidine kinase. Proc Natl Acad Sci USA 2009; 106:16185–16190.

    PubMed  CAS  Google Scholar 

  106. Cybulski LE, Del Solar G, Craig PO et al. Bacillus subtilis DesR functions as a phosphorylation-activated switch to control membrane lipid fluidity. J Biol Chem 2004; 279:39340–39347.

    PubMed  CAS  Google Scholar 

  107. Oppenheim DS, Yanofsky C. Translational coupling during expression of the tryptophan operon of Escherichia coli. Genetics 1980; 95:785–795.

    PubMed  CAS  Google Scholar 

  108. Hurme R, Berndt KD, Normark SJ et al. A proteinaceous gene regulatory thermometer in Salmonella. Cell 1997; 90:55–64.

    PubMed  CAS  Google Scholar 

  109. Sussman R, Jacob F. Sur un système de répression thermosensible chez le bactériophage d’Escherichia coli. C R Hebd Seances Acad Sci 1962; 254:1517–1519.

    PubMed  CAS  Google Scholar 

  110. Meltzer M, Hasenbein S, Mamant N et al. Structure, function and regulation of the conserved serine proteases DegP and DegS of Escherichia coli. Res Microbiol 2009; 160:660–666.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Schumann, W. (2012). Thermosensorsy Stems in Eubacteria. In: López-Larrea, C. (eds) Sensing in Nature. Advances in Experimental Medicine and Biology, vol 739. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1704-0_1

Download citation

Publish with us

Policies and ethics