Skip to main content

Chlorination and Biofouling Control in Industrial Cooling Water Systems

  • Chapter
  • First Online:

Abstract

Chlorine, a powerful oxidizing biocide, was first used in Europe and North America in the early 1900s for the disinfection of drinking water and resulted in a dramatic decline in typhoid and cholera cases. At the present time, it is largely used as for water treatment, such as taste and odour control, disinfection of drinking water and wastewater, in the food industry and for biofouling control. Of all the disinfectants, it is certainly the most extensively studied with regard to chemistry, toxicity and ecotoxicity. Due to its well-tried technology, its long-term worldwide industrial uses and its reasonable cost, chlorine remains the most common antifouling treatment in industrial cooling water systems. An ideal biocide is toxic to one particular organism or group of organisms, but has no harmful effects on “non-target” organisms. It is not consumed by reactions with substances in the water (i.e. there is no “demand”), and soon after it enters the environment, it breaks down into non-toxic forms. Chlorine is a long way from being an ideal biocide: it is non-specific and reacts with virtually all constituents of natural waters—including man-made pollutants—to yield products having varying degree of persistence and toxicity. Nevertheless, it continues to be used for biofouling control in power plant cooling water systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson DB, Richards BR (1966) Chlorination of seawater: effects on fouling and corrosion. Trans ASME 88:203–208

    CAS  Google Scholar 

  • Bayne BL, Thompson RJ, Widdows J (1976) Physiology. In: Bayne BL (ed) Marine mussels: their ecology and physiology. Cambridge University Press, Cambridge, pp 121–206

    Google Scholar 

  • Bidwell JR, Cherry DS, Farris JL, Petrille JC, Lyons LA (1999) Effects of intermittent halogenation on settlement, survival and growth of the zebra mussel, Dreissena polymorpha. Hydrobiologia 394:53–62

    Article  CAS  Google Scholar 

  • Brook AJ, Baker AL (1972) Chlorination at power plants: impact on phytoplankton productivity. Science 176:1414–1415

    Article  CAS  Google Scholar 

  • Choi DH, Park JS, Hwang CY, Huh SH, Cho BC (2002) Effects of thermal effluents from a power station on bacteria and heterotrophic nanoflagellates in coastal waters. Mar Ecol Prog Ser 229:1–10

    Article  Google Scholar 

  • Claudi R, Mackie GL (1994) Practical manual for zebra mussel monitoring and control. CRC Press, Boca Raton, 227pp

    Google Scholar 

  • Claudi R, Mackie GL (2009) Monitoring and control of macrofouling mollusks in fresh water systems. CRC Press, Boca Raton, FL, 508pp

    Google Scholar 

  • Costlow JD, Tipper RC (eds) (1984) Marine biodeterioration: an interdisciplinary study. Naval Institute Press, Annapolis, p 384

    Google Scholar 

  • Eppley RW, Renger EH, Williams PM (1976) Chlorine reactions with seawater constituents and the inhibition of photosynthesis of natural marine phytoplankton. Estuar Coast Mar Sci 4:147–161

    Article  CAS  Google Scholar 

  • Fischer EC, Castelli VJ, Rodgers SD, Bleile HR (1984) Fouling control technology. In: Costlow JD, Tipper RC (eds) Marine biodeterioration—an interdisciplinary study. Naval Institute Press, Annapolis, pp 261–300

    Google Scholar 

  • Fisher DJ, Burton DT, Yonkos LT, Turley SD, Ziegler GP (1999) The relative acute toxicity of continuous and intermittent exposures of chlorine and bromine to aquatic organisms in the presence and absence of ammonia. Water Res 33:760–768

    Article  CAS  Google Scholar 

  • Harrington DK, Van Benschoten JE, Jensen JN, Lewis DP, Neuhauser EF (1997) Combined use of heat and oxidants for controlling adult zebra mussels. Wat Res 31:2783–2791

    Google Scholar 

  • James WG (1967) Mussel fouling and use of exomotive chlorination. Chem Ind June 17:994–996

    Google Scholar 

  • Jenner HA (1985) Chlorine minimization in macrofouling control in The Netherlands. In: Jolly RL, Bull RJ, Davies WP, Katz S, Roberts MH, Jacobs VA (eds) Water chlorination: chemistry, environmental impact and health effects, vol 5. Lewis Publishers, London, pp 1425–1433

    Google Scholar 

  • Jenner HA, Whitehouse JW, Taylor CJL, Khalanski M (1998) Cooling water management in European power stations. Biology and control of fouling. Hydroécol Appl 1–2(10):1–225

    Google Scholar 

  • Jensen LD (ed) (1977) Biofouling control mechanisms: technology and ecological effects. Marcel Dekker, New York, p 113

    Google Scholar 

  • Khalanski M, Bordet F (1980) Effects of chlorination on marine mussels. In: Jolly RL, Brungs WA, Cumming RB (eds) Water chlorination: chemistry, environmental impact and health effects, vol 3. Michigan, Ann Arbor, pp 557–567

    Google Scholar 

  • Khalanski M, Jenner HA (2012) Chlorination chemistry and ecotoxicology of the marine cooling water systems. In: Rajagopal S, Jenner HA, Venugopalan VP (eds) Operational and environmental consequences of large industrial cooling water systems. Springer, New York, pp 183–226

    Google Scholar 

  • Kilgour BW, Baker MA (1994) Effects of season, stock, and laboratory protocols on survival of zebra mussels (Dreissena polymorpha) in bioassays. Arch Environ Contam Toxicol 27:29–35

    Article  CAS  Google Scholar 

  • Klerks PL, Fraleigh PC (1991) Controlling adult zebra mussels with oxidants. J Am Water Works Assoc 83:92–100

    CAS  Google Scholar 

  • Lewis BG (1985) Mussel control and chlorination. Central Electricity Research Laboratories, Leatherhead, Surrey, Report No. TPRD/L/2810/R85, pp 1–33

    Google Scholar 

  • Mattice JS, Zittel HE (1976) Site-specific evaluation of power plant chlorination. J Water Pollut Contr Fed 48:2284–2308

    CAS  Google Scholar 

  • Neitzel DA, Johnson KI, Page TL, Young JS, Daling PM (1984) Correlation of bivalve biological characteristics and service water systems design. Report No. NUREG/CR 4070. United States Nuclear Regulatory Commission, Washington

    Google Scholar 

  • Opresko DM (1980) Review of the open literature on the effect of chlorine on aquatic organisms. Electric Power Research Institute, Palo Alto, CA, EA-1491

    Google Scholar 

  • Perkins EJ (1974) The biology of estuaries and coastal waters. Academic, New York

    Google Scholar 

  • Rajagopal S (1991) Biofouling problems in the condenser cooling circuit of a coastal power station with special reference to green mussel, Perna viridis (L.). PhD Thesis, University of Madras, Madras, India, 113pp

    Google Scholar 

  • Rajagopal S (1997) The ecology of tropical marine mussels and their control in industrial cooling water systems. DSc Thesis (ISBN 90-9010183-7), University of Nijmegen, Nijmegen, Netherlands, 184pp

    Google Scholar 

  • Rajagopal S, Van der Velde G (2012) Invasive species: implications for industrial cooling water systems. In: Rajagopal S, Jenner HA, Venugopalan VP (eds) Operational and environmental consequences of large industrial cooling water systems. Springer, New York, pp 127–162

    Google Scholar 

  • Rajagopal S, Sasikumar N, Azariah J, Nair KVK (1991a) Some observations on biofouling in the cooling water conduits of a coastal power plant. Biofouling 3:311–324

    Article  Google Scholar 

  • Rajagopal S, Venugopalan VP, Nair KVK, Azariah J (1991b) Biofouling problems and its control in a tropical coastal power station—a case study. Biofouling 3:325–338

    Article  CAS  Google Scholar 

  • Rajagopal S, Venugopalan VP, Nair KVK, Azariah J (1995) Response of green mussel, Perna viridis (L.) to chlorine in the context of power plant biofouling control. Mar Freshwater Behav Physiol 25:261–274

    Article  Google Scholar 

  • Rajagopal S, Nair KVK, Azariah J, Van der Velde G, Jenner HA (1996) Chlorination and mussel control in the cooling conduits of a tropical coastal power station. Mar Environ Res 41:201–220

    Article  CAS  Google Scholar 

  • Rajagopal S, Nair KVK, Van der Velde G, Jenner HA (1997a) Response of mussel, Brachidontes striatulus to chlorination: an experimental study. Aquat Toxicol 39:135–149

    Article  CAS  Google Scholar 

  • Rajagopal S, Van der Velde G, Jenner HA (1997b) Shell valve movement response of brackish water mussel, Mytilopsis leucophaeta, to chlorination. Water Res 31:3187–3190

    Article  CAS  Google Scholar 

  • Rajagopal S, Van der Gaag M, Van der Velde G, Jenner HA (2002a) Control of brackish water fouling mussel, Mytilopsis leucophaeata (Conrad) with sodium hypochlorite. Arch Environ Contam Toxicol 43:296–300

    Article  CAS  Google Scholar 

  • Rajagopal S, Van der Velde G, Jenner HA (2002b) Does status of attachment influence chlorine toxicity in zebra mussel, Dreissena polymorpha? Environ Toxicol Chem 21:342–346

    CAS  Google Scholar 

  • Rajagopal S, Van der Velde G, Jenner HA (2002c) Effects of low-level chlorination on zebra mussel, Dreissena polymorpha. Water Res 36:3029–3034

    Article  CAS  Google Scholar 

  • Rajagopal S, Van der Velde G, Van der Gaag M, Jenner HA (2002d) Laboratory evaluation of the toxicity of chlorine to the fouling hydroid Cordylophora caspia. Biofouling 18:57–64

    Article  CAS  Google Scholar 

  • Rajagopal S, Van der Velde G, Van der Gaag M, Jenner HA (2002e) Sublethal responses of zebra mussel, Dreissena polymorpha to low-level chlorination: an experimental study. Biofouling 18:95–104

    Article  CAS  Google Scholar 

  • Rajagopal S, Van der Velde G, Van der Gaag M, Jenner HA (2003a) How effective is intermittent chlorination to control adult mussel fouling in cooling water systems? Water Res 37:329–338

    Article  CAS  Google Scholar 

  • Rajagopal S, Venugopalan VP, Van der Velde G, Jenner HA (2003b) Response of fouling brown mussel, Perna perna (L.) to chlorine. Arch Environ Contam Toxicol 44:369–376

    Article  CAS  Google Scholar 

  • Rajagopal S, Venugopalan VP, Van der Velde G, Jenner HA (2003c) Comparative chlorine and temperature tolerance of oyster Crassostrea madrasensis: implications for cooling system fouling. Biofouling 19:115–124

    Article  CAS  Google Scholar 

  • Rajagopal S, Venugopalan VP, Van der Velde G, Jenner HA (2003d) Tolerance of five species of tropical marine mussels to continuous chlorination. Mar Environ Res 55:277–291

    Article  CAS  Google Scholar 

  • Rajagopal S, Van der Velde G, Van der Gaag M, Jenner HA (2005a) Byssal detachment underestimates tolerance of mussels to toxic compounds. Mar Pollut Bull 50:20–29

    Article  CAS  Google Scholar 

  • Rajagopal S, Venugopalan VP, Van der Velde G, Jenner HA (2005b) Response of mussel Brachidontes variabilis to chlorination. Chem Ecol 21:119–132

    Article  CAS  Google Scholar 

  • Rajagopal S, Venugopalan VP, Van der Velde G, Jenner HA (2005c) Dose–response of mussels to chlorine. In: Lehr JH, Keeley J (eds) Water encyclopedia, vol V. Water quality and resource development. Wiley, New York, pp 401–406

    Google Scholar 

  • Rajagopal S, Venugopalan VP, Van der Velde G, Jenner HA (2005d) Chlorine and chlorine residuals. In: Lehr JH, Keeley J, Lehr J (eds) Water encyclopedia, vol II. Domestic, municipal, and industrial water supply and waste disposal. Wiley, New York, pp 127–130

    Google Scholar 

  • Rajagopal S, Venugopalan VP, van der Velde G, Jenner HA (2006a) Greening of the coast: a review of the Perna viridis success story. Aquat Ecol 40:273–297

    Article  CAS  Google Scholar 

  • Rajagopal S, Venugopalan VP, Van der Velde G, Jenner HA (2006b) Mussel colonization of a high flow artificial benthic habitat: byssogenesis holds the key. Mar Environ Res 62:98–115

    Article  CAS  Google Scholar 

  • Rajagopal S, Venugopalan VP, Van der Velde G, Jenner HA (2006c) Control of modiolid mussels in cooling water systems by continuous chlorination. Arch Environ Contam Toxicol 51:215–222

    Article  CAS  Google Scholar 

  • Rajagopal S, Venugopalan VP, Van der Velde G (2009) Better biocide delivery to fouling surfaces: reaching the interface from within. In: 16th international conference on aquatic invasive species, Montreal, Canada, 19–22 April 2009

    Google Scholar 

  • Rajagopal S, Van der Velde G, Jenner HA (2010) Chlorination for Dreissena polymorpha control: old war-horse for the new pest? In: van der Velde G, Rajagopal S, Bij de Vaate A (eds) The Zebra mussel in Europe. Backhuys Publishers, Leiden, pp 417–428

    Google Scholar 

  • Standard Methods (2005) Standard methods for the examination of water and wastewater. In: Eaton AD, Clesceri LS, Rice EW, Greenberg AE (eds) Published jointly by American Public Health Association, American Water Works Association, and Water Environment Federation, Washingtonn DC, USA, 1368pp

    Google Scholar 

  • Turner HJ, Reynolds DM, Redfield AC (1948) Chlorine and sodium pentachlorphenate as fouling preventives in seawater conduits. Ind Eng Chem 40:450–453

    Article  CAS  Google Scholar 

  • Turnpenny A, Bruijs MCM, Wolter C, Edwards N (2012) Regulatory aspects in Europe for large scale cooling water use. In: Rajagopal S, Jenner HA, Venugopalan VP (eds) Operational and environmental consequences of large industrial cooling water systems. Springer, New York, pp 421–454

    Google Scholar 

  • Van Benschoten JE, Jensen JN, Harrington DK, DeGirolamo D (1995) Zebra mussel mortality with chlorine. J Am Water Works Assoc 87:101–108

    Google Scholar 

  • White GC (1999) Handbook of chlorination and alternative disinfectant. Wiley, New York

    Google Scholar 

  • Whitehouse JW, Khalanski M, Saroglia MG, Jenner HA (1985) The control of biofouling in marine and estuarine power stations: a collaborative research working group report for use by station designers and station managers. CEGB NW Region 191-9-85, CEGB (England), EdF (France), ENEL (Italy), KEMA (The Netherlands), pp 1–48

    Google Scholar 

Download references

Acknowledgements

This study was partly funded by Department of Animal Ecology and Ecophysiology (Radboud University Nijmegen, The Netherlands), KEMA Technical and Operational Services (TOS, Arnhem, The Netherlands) and the European Commission in the Community’s Sixth Framework Programme (INCO project, Contract number: PL510658, TBT Impacts). It is contribution number 526 of the Centre for Wetland Ecology (CWE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeevi Rajagopal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rajagopal, S. (2012). Chlorination and Biofouling Control in Industrial Cooling Water Systems. In: Rajagopal, S., Jenner, H., Venugopalan, V. (eds) Operational and Environmental Consequences of Large Industrial Cooling Water Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1698-2_8

Download citation

Publish with us

Policies and ethics