Skip to main content

Balanced Performance/Robustness PID Design

  • Chapter
  • First Online:
Intelligent Control and Innovative Computing

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 110))

Abstract

The design of the closed-loop control system must take into account the system performance to load-disturbance and set-point changes and its robustness to variation of the controlled process characteristics, preserving the well-known trade-off among all these variables. This work faces with the combined servo/regulation performance and robustness problem, in order to get an intermediate solution between the robustness increase and the consequent loss in the optimality degree of the performance. The proposed balanced Proportional-Integrative-Derivative (PID) control design is tested against other tuning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfaro VM (2006) Low-order models identification from process reaction curve. Ciencia y Tecnología (Costa Rica) 24(2):197–216 (in Spanish)

    Google Scholar 

  2. Arrieta O, Vilanova R (2010) Performance degradation analysis of controller tuning modes: application to an optimal PID tuning. Int J Innov Comput Inf Contr 6(10):4719–4729

    Google Scholar 

  3. Arrieta O, Vilanova R (2011) Simple PID tuning rules with guaranteed M s robustness achievement. In: Proceedings of 18th IFAC world congress, August 28–September 2, Milano, Italy

    Google Scholar 

  4. Arrieta O, Visioli A, Vilanova R (2010) PID autotuning for weighted servo/regulation control operation. J Process Contr 20(4):472–480

    Article  Google Scholar 

  5. Åström KJ, Hägglund T (1984) Automatic tuning of simple regulators with specifications on phase and amplitude margin. Automatica 20:645–651

    Article  MathSciNet  Google Scholar 

  6. Åström KJ, Hägglund T (1995) PID controllers: theory, design, and tuning. Instrument of Society of America, Research Triangle Park, North Carolina

    Google Scholar 

  7. Åström KJ, Hägglund T (2000) Benchmark systems for PID control. In: Proceedings of IFAC digital control: past, present and future of PID control, Terrassa, Spain

    Article  Google Scholar 

  8. Åström KJ, Hägglund T (2001) The future of PID control. Contr Eng Pract 9:1163–1175

    Article  Google Scholar 

  9. Åström KJ, Hägglund T (2004) Revisiting the Ziegler–Nichols step response method for PID control. J Process Contr 14:635–650

    Article  Google Scholar 

  10. Åström KJ, Hägglund T (2006) Advanced PID control. ISA: The Instrumentation, Systems, and Automation Society

    Google Scholar 

  11. Babb M (1990) Pneumatic instruments gave birth to automatic control. Contr Eng 37(12):20–22

    Google Scholar 

  12. Bennett S (2000) The past of PID controllers. In: Proceedings of IFAC digital control: past, present and future of PID control, Terrassa, Spain

    Article  Google Scholar 

  13. Chen D, Seborg DE (2002) PI/PID controller design based on direct synthesis and disturbance rejection. Ind Eng Chem Res 41(19):4807–4822

    Article  Google Scholar 

  14. Cohen GH, Coon GA (1953) Theoretical considerations of retarded control. ASME Trans 75:827–834

    Google Scholar 

  15. Fung HW, Wang QG, Lee TH (1998) PI tuning in terms of gain and phase margins. Automatica 34:1145–1149

    Article  Google Scholar 

  16. Ho WK, Hang CC, Cao LS (1995) Tuning PID controllers based on gain and phase margin specifications. Automatica 31(3):497–502

    Article  MathSciNet  Google Scholar 

  17. Ho WK, Lim KL, Hang CC, Ni LY (1999) Getting more phase margin and performance out of PID controllers. Automatica 35:1579–1585

    Article  Google Scholar 

  18. Ingimundarson A, Hägglund T, Åström KJ (2004) Criteria for desing of PID controllers. Technical report, ESAII, Universitat Politecnica de Catalunya

    Google Scholar 

  19. Kristiansson B, Lennartson B (2006) Evaluation and simple tuning of PID controllers with high-frequency robustness. J Process Contr 16:91–102

    Article  Google Scholar 

  20. López AM, Miller JA, Smith CL, Murrill PW (1967) Tuning controllers with Error-Integral criteria. Instru Technol 14:57–62

    Google Scholar 

  21. Martin J, Smith CL, Corripio AB (1975) Controller tuning from simple process models. Instru Technol 22(12):39–44

    Google Scholar 

  22. O’Dwyer A (2003). Handbook of PI and PID controller tuning rules. Imperial College Press, London, UK

    Book  Google Scholar 

  23. Rivera DE, Morari M, Skogestad S (1986) Internal model control 4 PID controller design. Ind Eng Chem Res 25:252–265

    Google Scholar 

  24. Rovira A, Murrill PW, Smith CL (1969) Tuning controllers for setpoint changes. Instru Contr Syst 42:67–69

    Google Scholar 

  25. Skogestad S (2003) Simple analytic rules for model reduction and PID controller tuning. J Process Contr 13:291–309

    Article  Google Scholar 

  26. Tan W, Liu J, Chen T, Marquez HJ (2006) Comparison of some well-known PID tuning formulas. Comput Chem Eng 30:1416–1423

    Article  Google Scholar 

  27. Vilanova R (2008) IMC based robust PID design: tuning guidelines and automatic tuning. J Process Contr 18:61–70

    Article  Google Scholar 

  28. Vilanova R, Alfaro VM, Arrieta O (2011) Ms based approach for simple robust PI controller tuning design. In: Proceedings of the international multiconference of engineers and computer scientists 2011, Hong Kong, 16–18 March 2011. Lecture notes in engineering and computer science, pp 767–771

    Google Scholar 

  29. Yaniv O, Nagurka M (2004) Design of PID controllers satisfying gain margin and sensitivity constrains on a set of plants. Automatica 40:111–116

    Article  Google Scholar 

  30. Zhuang M, Atherton D (1993) Automatic tuning of optimum PID controllers. IEE Proc Part D 140(3):216–224

    Article  Google Scholar 

  31. Ziegler JG, Nichols NB (1942) Optimum settings for automatic controllers. ASME Trans 64:759–768

    Google Scholar 

Download references

Acknowledgments

This work has received financial support from the Spanish CICYT program under grant DPI2010-15230. Also, the financial support from the University of Costa Rica and from the MICIT and CONICIT of the Government of the Republic of Costa Rica is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orlando Arrieta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Arrieta, O., Vilanova, R., Alfaro, V.M. (2012). Balanced Performance/Robustness PID Design. In: Ao, S., Castillo, O., Huang, X. (eds) Intelligent Control and Innovative Computing. Lecture Notes in Electrical Engineering, vol 110. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1695-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1695-1_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1694-4

  • Online ISBN: 978-1-4614-1695-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics