Skip to main content

Metabolomics Applications in Human Nutrition

  • Chapter
  • First Online:
Genetics Meets Metabolomics

Abstract

Human metabolism is a continuum. It shifts constantly between anabolic conditions after food intake and catabolic states between meals or during extended starvation periods. At all times there is need of a constant supply of nutrients and metabolites for ATP production and of building blocks for the continuous remodeling of cellular structures. However, the sources of fuels used to maintain metabolic functions are variable (carbohydrates versus lipids versus proteins) depending on frequency of eating and fasting and the quantity and quality of food intake. The profile of the metabolites in any biological sample obtained, taken at any time is a snapshot of an ever-changing “integrated metabolome”. Human plasma, urine or breath metabolomes contain not only endogenously produced metabolites but also the nutrients and metabolites provided by the diet and, in addition, metabolites derived from the microbiota hosted in the human large intestine which are partly absorbed and appear later in blood and urine (Fig. 9.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watanabe S, Yamaguchi M, Sobue T et al (1998) Pharmacokinetic of soybean isoflavones in plasma, urine and feces of men after ingestion of 60 g baked soybean powder. J Nutr 128:1710–1715

    PubMed  CAS  Google Scholar 

  2. O’Sullivan A, Gibney MJ, Brennan L (2011) Dietary intake patterns are reflected in metabolomic profiles: potential role in dietary assessment studies. Am J Clin Nutr 93:314–321

    Article  PubMed  Google Scholar 

  3. Altmaier E, Kastenmüller G, Römisch-Margl W et al (2011) Questionnaire-based self-reported nutrition habits associate with serum metabolism as revealed by quantitative targeted metabolomics. Eur J Epidemiol 26:145–156

    Article  PubMed  Google Scholar 

  4. Llorach R, Urpi-Sarda M, Jauregui O, Monagas M, Andres-Lacueva C (2009) An LC-MS-based metabolomics approach for exploring urinary metabolome modifications after cocoa consumption. J Proteome Res 8:5060–5068

    Article  PubMed  CAS  Google Scholar 

  5. Stalmach A, Troufflard S, Serafini M, Crozier A (2009) Absorption, metabolism and excretion of Choladi green tea flavan-3-ols by humans. Mol Nutr Food Res 53(Suppl 1):S44–S53

    Article  PubMed  Google Scholar 

  6. Mullen W, Edwards CA, Crozier A (2006) Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. Br J Nutr 96:107–116

    Article  PubMed  CAS  Google Scholar 

  7. Heinzmann SS, Brown IJ, Chan Q et al (2010) Metabolic profiling strategy for discovery of nutritional biomarkers: proline betaine as a marker of citrus consumption. Am J Clin Nutr 92:436–443

    Article  PubMed  CAS  Google Scholar 

  8. Stella C, Beckwith-Hall B, Cloarec O et al (2006) Susceptibility of human metabolic phenotypes to dietary modulation. J Proteome Res 5:2780–2788

    Article  PubMed  CAS  Google Scholar 

  9. Bergstrom J, Furst P, Noree LO, Vinnars E (1974) Intracellular free amino acid concentration in human muscle tissue. J Appl Physiol 36:693–697

    PubMed  CAS  Google Scholar 

  10. Haimoto H, Sasakabe T, Umegaki H, Wakai K (2009) Acute metabolic responses to a high-carbohydrate meal in outpatients with type 2 diabetes treated with low-carbohydrate diet: a crossover meal tolerance study. Nutr Metab 29:52

    Article  Google Scholar 

  11. Skurk T, Rubio-Aliaga I, Stamfort A, Hauner H, Daniel H (2010) New metabolic interdendencies revealed by plasma metabolite profiling after two dietary challenges. Metabolomics 7:388–399

    Article  Google Scholar 

  12. Rubio-Aliaga I, de Roos B, Duthie SJ et al (2010) Metabolomics of prolonged fasting in humans reveals new catabolic markers. Metabolomics 7:375–387

    Article  Google Scholar 

  13. Zhao X, Peter A, Fritsche J et al (2009) Changes of the plasma metabolome during an oral glucose tolerance test: is there more than glucose to look at? Am J Physiol Endocrinol Metab 296:E384–E393

    Article  PubMed  CAS  Google Scholar 

  14. Shaham O, Wei R, Wang TJ et al (2008) Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol Syst Biol 4:214

    Article  PubMed  Google Scholar 

  15. Wopereis S, Rubingh C, van Erk MF et al (2009) Metabolic profiling of the response to an oral glucose tolerance test detects subtle metabolic changes. PLoS One 4:e4525

    Article  PubMed  Google Scholar 

  16. Hyde R, Peyrollier K, Hundal HS (2002) Insulin promotes the cell surface recruitment of the SAT2/ATA2 system A amino acid transporter from an endosomal compartment in skeletal muscle cells. J Biol Chem 277:13628–13634

    Article  PubMed  CAS  Google Scholar 

  17. Deo RC, Hunter L, Lewis GD et al (2010) Interpreting metabolomic profiles using unbiased pathway models. PLoS Comput Biol 6:e1000692

    Article  PubMed  Google Scholar 

  18. Gall WE, Beebe K, Lawton KA et al (2010) Alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS One 5:e10883

    Article  PubMed  Google Scholar 

  19. Suhre K, Meisinger C, Döing A et al (2010) Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One 5:e13953

    Article  PubMed  Google Scholar 

  20. Zhao X, Fritsche J, Wang J et al (2010) Metabonomic fingerprints of fasting plasma and spot urine reveal human pre-diabetic metabolic traits. Metabolomics 6:362–374

    Article  PubMed  CAS  Google Scholar 

  21. Cahill LE, El-Sohemy A (2009) Vitamin c transporter gene polymorphisms, dietary vitamin c and serum ascorbic acid. J Nutrigenet Nutrigenomics 2:292–301

    Article  PubMed  CAS  Google Scholar 

  22. Wright ME, Peters U, Gunter MJ et al (2009) Association of variants in two vitamin e transport genes with circulating vitamin e concentrations and prostate cancer risk. Cancer Res 69:1429–1438

    Article  PubMed  CAS  Google Scholar 

  23. Manolescu DC, El-Kares R, Lakhal-Chaieb L et al (2010) Newborn serum retinoic acid level is associated with variants of genes in the retinol metabolism pathway. Pediatr Res 67:598–602

    Article  PubMed  CAS  Google Scholar 

  24. Talmud PJ, Hawe E, Martin S et al (2002) Relative contribution of variation within APOC3/A4/A5 gene cluster in determining plasma triglycerides. Hum Mol Genet 11:3039–3046

    Article  PubMed  CAS  Google Scholar 

  25. Moreno JA, López-Miranda J, Marín C et al (2003) The influence of the apolipoprotein E gene promoter (−219 G/T) polymorphism on postprandial lipoprotein metabolism in young normolipemic males. J Lipid Res 44:2059–2064

    Article  PubMed  CAS  Google Scholar 

  26. Kulseth MA, Berge KE, Bogsrud MP, Leren TP (2010) Analysis of LDLR mRNA in patients with familial hypercholesterolemia revealed a novel mutation in intron 14, which activates a cryptic splice site. J Hum Genet 55:676–680

    Article  PubMed  CAS  Google Scholar 

  27. Torres AL, Moorjani S, Vohl MC et al (1996) Heterozygous familial hypercholesterolemia in children: low-density lipoprotein receptor mutational analysis and variation in the expression of plasma lipoprotein-lipid concentrations. Atherosclerosis 126:163–171

    Article  PubMed  CAS  Google Scholar 

  28. McCarthy JJ, Lewitzky S, Reeves C et al (2003) Polymorphisms of the HDL receptor gene associated with HDL cholesterol levels in diabetic kindred from three populations. Hum Hered 55:163–170

    Article  PubMed  CAS  Google Scholar 

  29. Volcik KA, Nettleton JA, Ballantyne CM, Boerwinkle E (2008) Peroxisome proliferator-­activated receptor [alpha] genetic variation interacts with n-6 and long-chain n-3 fatty acid intake to affect total cholesterol and LDL-cholesterol concentrations in the atherosclerosis risk in communities study. Am J Clin Nutr 87:1926–1931

    PubMed  CAS  Google Scholar 

  30. Robitaille J, Brouilette C, Houde A et al (2004) Association between the PPARalpha-L162V polymorphism and components of the metabolic syndrome. J Hum Genet 49:482–489

    Article  PubMed  CAS  Google Scholar 

  31. Bokor S, Dumont J, Spinneker A et al (2010) Single nucleotide polymorphisms in the FADS gene cluster are associated with delta-5 and delta-6 desaturase activities estimated by serum fat (2010) Single nucleotide polymorphisms in the FADS gene cluster are associated with delta-5 and delta-6 desaturase activities estimated by serum fat aid ratios. J Lipid Res 51:2325–2533

    Article  PubMed  CAS  Google Scholar 

  32. Rzehak P, Heinrich J, Klopp N et al (2009) Evidence for an association between genetic variants of the fatty acid desaturase 1 fatty acid desaturase 2 (FADS1 FADS2) gene cluster in the fatty acid composition of erythrocyte membranes. Br J Nutr 101:20–26

    Article  PubMed  CAS  Google Scholar 

  33. Kröger J, Zietemann V, Enzenbach C et al (2011) Erythrocyte membrane phospholipid fatty acids, desaturase activity, and dietary fatty acids in relation to risk of type 2 diabetes in the European prospective investigation into caner and nutrition (EPIC)-potsdam study. Am J Clin Nutr 93:127–142

    Article  PubMed  Google Scholar 

  34. Schaeffer L, Gohlke H, Müller M et al (2006) Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition phospholipids. Hum Mol Genet 15:1745–1756

    Article  PubMed  CAS  Google Scholar 

  35. Ashfield-Watt PA, Pullin CH, Whiting JM et al (2002) Methlenetetrahydrofolate reductase 677 C–  >  T genotype modulates homocysteine responses to a folate-rich diet or a low-dose folic acid supplement: a randomized controlled trial. Am J Clin Nutr 76:180–186

    PubMed  CAS  Google Scholar 

  36. Bazzano LA, Reynolds K, Holder KN, He J (2006) Effect of folic acid supplementation on risk of cardiovascular diseases: a meta-analysis of randomized controlled trials. JAMA 296:2720–2726

    Article  PubMed  CAS  Google Scholar 

  37. Albert CM, Cook NR, Gaziano JM et al (2008) Effect of folic acid and B vitamins on risk of cardiovascular events and total mortality among women at high risk for cardiovascular disease: a randomized trial. JAMA 299:2027–2036

    Article  PubMed  CAS  Google Scholar 

  38. Nijhout HF, Reed MC, Budu P, Ulrich CM (2004) A mathematical model of the folate cycle: new insights into folate homeostasis. J Biol Chem 279:55008–55016

    Article  PubMed  CAS  Google Scholar 

  39. Reed MC, Nijhout HF, Neuhouser M et al (2006) A mathematical model gives insights into nutritional and genetic aspects of folate-mediated one-carbon metabolism. J Nutr 136:2653–2661

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannelore Daniel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Daniel, H., Sailer, M. (2012). Metabolomics Applications in Human Nutrition. In: Suhre, K. (eds) Genetics Meets Metabolomics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1689-0_9

Download citation

Publish with us

Policies and ethics