Skip to main content

Metabolomic Systems Biology of Protozoan Parasites

  • Chapter
  • First Online:
Genetics Meets Metabolomics

Abstract

Infectious diseases caused by protozoan parasites lead to a substantial health burden and mortality in developing countries. The search for better drugs and optimized treatment regimes justifies basic research into the biology of these organisms. At the same time, these deep-branching eukaryotes are interesting model organisms for systems biology: their unicellular parasitic life style, the associated reduced metabolic capacity together with some unique genomic adaptations allow comprehensive studies that are not easily possible in multicellular organisms. They can therefore be used to explore advanced concepts and technologies, before they are applied to more complex systems. This chapter presents case studies of metabolomics systems biology on two major protozoan pathogens, the African trypanosome Trypanosoma brucei, causative agent of sleeping sickness, and the Leishmania donovani parasites responsible for visceral leishmaniasis, also known as kala-azar, on the Indian subcontinent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fell DA (1992) Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J 286(Pt 2):313–330

    PubMed  CAS  Google Scholar 

  2. Fell DA (1998) Increasing the flux in metabolic pathways: a metabolic control analysis perspective. Biotechnol Bioeng 58(2–3):121–124

    Article  PubMed  CAS  Google Scholar 

  3. Bakker BM, Westerhoff HV, Opperdoes FR, Michels PA (2000) Metabolic control analysis of glycolysis in trypanosomes as an approach to improve selectivity and effectiveness of drugs. Mol Biochem Parasitol 106(1):1–10

    Article  PubMed  CAS  Google Scholar 

  4. Reed JL, Famili I, Thiele I, Palsson BO (2006) Towards multidimensional genome annotation. Nat Rev Genet 7(2):130–141

    Article  PubMed  CAS  Google Scholar 

  5. Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2(11):886–897

    Article  PubMed  CAS  Google Scholar 

  6. Kummel A, Panke S, Heinemann M (2006) Systematic assignment of thermodynamic constraints in metabolic network models. BMC Bioinformatics 7:512

    Article  PubMed  Google Scholar 

  7. Kummel A, Panke S, Heinemann M (2006) Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data. Mol Syst Biol 2(2006):0034

    PubMed  Google Scholar 

  8. Covert MW, Xiao N, Chen TJ, Karr JR (2008) Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 24(18):2044–2050

    Article  PubMed  CAS  Google Scholar 

  9. Akesson M, Forster J, Nielsen J (2004) Integration of gene expression data into genome-scale metabolic models. Metab Eng 6(4):285–293

    Article  PubMed  CAS  Google Scholar 

  10. Shlomi T, Eisenberg Y, Sharan R, Ruppin E (2007) A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol Syst Biol 3:101

    Article  PubMed  Google Scholar 

  11. Covert MW, Palsson BO (2002) Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J Biol Chem 277(31):28058–28064

    Article  PubMed  CAS  Google Scholar 

  12. Jankowski MD, Henry CS, Broadbelt LJ, Hatzimanikatis V (2008) Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J 95(3):1487–1499

    Article  PubMed  CAS  Google Scholar 

  13. Ko CL, Voit EO, Wang FS (2009) Estimating parameters for generalized mass action models with connectivity information. BMC Bioinformatics 10:140

    Article  PubMed  Google Scholar 

  14. Smallbone K, Simeonidis E, Swainston N, Mendes P (2010) Towards a genome-scale kinetic model of cellular metabolism. BMC Syst Biol 4:6

    Article  PubMed  Google Scholar 

  15. Kotte O, Heinemann M (2009) A divide-and-conquer approach to analyze underdetermined biochemical models. Bioinformatics 25(4):519–525

    Article  PubMed  CAS  Google Scholar 

  16. Hollywood K, Brison DR, Goodacre R (2006) Metabolomics: current technologies and future trends. Proteomics 6(17):4716–4723

    Article  PubMed  CAS  Google Scholar 

  17. Fu J, Keurentjes JJ, Bouwmeester H et al (2009) System-wide molecular evidence for phenotypic buffering in Arabidopsis. Nat Genet 41(2):166–167

    Article  PubMed  CAS  Google Scholar 

  18. Wang Y, Utzinger J, Saric J et al (2008) Global metabolic responses of mice to Trypanosoma brucei brucei infection. Proc Natl Acad Sci USA 105(16):6127–6132

    Article  PubMed  CAS  Google Scholar 

  19. Barrett MP, Bakker BM, Breitling R (2010) Metabolomic systems biology of trypanosomes. Parasitology 137(9):1285–1290

    Article  PubMed  CAS  Google Scholar 

  20. Bakker BM, Michels PA, Opperdoes FR, Westerhoff HV (1997) Glycolysis in bloodstream form Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes. J Biol Chem 272(6):3207–3215

    Article  PubMed  CAS  Google Scholar 

  21. Bakker BM, Michels PA, Opperdoes FR, Westerhoff HV (1999) What controls glycolysis in bloodstream form Trypanosoma brucei? J Biol Chem 274(21):14551–14559

    Article  PubMed  CAS  Google Scholar 

  22. Bakker BM, Krauth-Siegel RL, Clayton C et al (2010) The silicon trypanosome. Parasitology 137(9):1333–1341

    Article  PubMed  CAS  Google Scholar 

  23. Chukualim B, Peters N, Hertz-Fowler C, Berriman M (2008) TrypanoCyc – a metabolic pathway database for Trypanosoma brucei. BMC Bioinformatics 9(suppl 10):P5

    Article  Google Scholar 

  24. Breitling R, Ritchie S, Goodenowe D, Stewart ML, Barrett MP (2006) Ab inition prediction of metabolic networks using Fourier transform mass spectrometry data. Metabolomics 2(3):155–164

    Article  CAS  Google Scholar 

  25. Breitling R, Pitt AR, Barrett MP (2006) Precision mapping of the metabolome. Trends Biotechnol 24(12):543–548

    Article  PubMed  CAS  Google Scholar 

  26. Breitling R, Vitkup D, Barrett MP (2008) New surveyor tools for charting microbial metabolic maps. Nat Rev Microbiol 6(2):156–161

    Article  PubMed  CAS  Google Scholar 

  27. Bacchi CJ, Nathan HC, Hutner SH, McCann PP, Sjoerdsma A (1980) Polyamine metabolism: a potential therapeutic target in trypanosomes. Science 210(4467):332–334

    Article  PubMed  CAS  Google Scholar 

  28. Heby O, Persson L, Rentala M (2007) Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas’ disease, and leishmaniasis. Amino Acids 33(2):359–366

    Article  PubMed  CAS  Google Scholar 

  29. Jourdan F, Breitling R, Barrett MP, Gilbert D (2008) MetaNetter: inference and visualization of high-resolution metabolomic networks. Bioinformatics 24(1):143–145

    Article  PubMed  CAS  Google Scholar 

  30. Rogers S, Scheltema RA, Girolami M, Breitling R (2009) Probabilistic assignment of formulas to mass peaks in metabolomics experiments. Bioinformatics 25(4):512–518

    Article  PubMed  CAS  Google Scholar 

  31. Scheltema RA, Decuypere S, T’Kindt R et al (2010) The potential of metabolomics for Leishmania research in the post-genomics era. Parasitology 137(9):1291–1302

    Article  PubMed  CAS  Google Scholar 

  32. Dujardin JC (2009) Structure, dynamics and function of Leishmania genome: resolving the puzzle of infection, genetics and evolution? Infect Genet Evol 9(2):290–297

    Article  PubMed  CAS  Google Scholar 

  33. Leprohon P, Legare D, Raymond F et al (2009) Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic Acids Res 37(5):1387–1399

    Article  PubMed  CAS  Google Scholar 

  34. Imamura H, Decuypere S, Tim Downing T et al (2010) Whole comparative genome sequencing reveals several levels of genomic diversity among Leishmania donovani strains in Indian subcontinent. In: 12th international conference on parasitology, Melbourne

    Google Scholar 

  35. T’Kindt R, Scheltema RA, Jankevics A et al (2010) Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Negl Trop Dis 4(11):e904

    Article  PubMed  Google Scholar 

  36. Kafsack BF, Llinas M (2010) Eating at the table of another: metabolomics of host-parasite interactions. Cell Host Microbe 7(2):90–99

    Article  PubMed  CAS  Google Scholar 

  37. t’Kindt R, Jankevics A, Scheltema RA et al (2010) Towards an unbiased metabolic profiling of protozoan parasites: optimisation of a Leishmania sampling protocol for HILIC-orbitrap analysis. Anal Bioanal Chem 398(5):2059–2069

    Article  PubMed  Google Scholar 

  38. Scheltema R, Decuypere S, Dujardin J et al (2009) Simple data-reduction method for high-resolution LC-MS data in metabolomics. Bioanalysis 1(9):1551–1557

    Article  PubMed  CAS  Google Scholar 

  39. Scheltema RA, Kamleh A, Wildridge D et al (2008) Increasing the mass accuracy of high-resolution LC-MS data using background ions: a case study on the LTQ-Orbitrap. Proteomics 8(22):4647–4656

    Article  PubMed  CAS  Google Scholar 

  40. van der Werf MJ, Overkamp KM, Muilwijk B, Coulier L, Hankemeier T (2007) Microbial metabolomics: toward a platform with full metabolome coverage. Anal Biochem 370(1):17–25

    Article  PubMed  Google Scholar 

  41. Brown SC, Kruppa G, Dasseux JL (2005) Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrom Rev 24(2):223–231

    Article  PubMed  CAS  Google Scholar 

  42. Hu Q, Noll RJ, Li H et al (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40(4):430–443

    Article  PubMed  CAS  Google Scholar 

  43. Kind T, Fiehn O (2006) Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics 7:234

    Article  PubMed  Google Scholar 

  44. Kind T, Fiehn O (2007) Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 8:105

    Article  PubMed  Google Scholar 

  45. Zheng L, T’Kind R, Decuypere S et al (2010) Profiling of lipids in Leishmania donovani using hydrophilic interaction chromatography in combination with Fourier transform mass spectrometry. Rapid Commun Mass Spectrom 24(14):2074–2082

    Article  PubMed  CAS  Google Scholar 

  46. Sauer U (2004) High-throughput phenomics: experimental methods for mapping fluxomes. Curr Opin Biotechnol 15(1):58–63

    Article  PubMed  CAS  Google Scholar 

  47. Zamboni N, Sauer U (2009) Novel biological insights through metabolomics and 13 C-flux analysis. Curr Opin Microbiol 12(5):553–558

    Article  PubMed  CAS  Google Scholar 

  48. Sauer U (2006) Metabolic networks in motion: 13 C-based flux analysis. Mol Syst Biol 2:62

    Article  PubMed  Google Scholar 

  49. Haanstra JR, Stewart M, Luu VD et al (2008) Control and regulation of gene expression: quantitative analysis of the expression of phosphoglycerate kinase in bloodstream form Trypanosoma brucei. J Biol Chem 283(5):2495–2507

    Article  PubMed  CAS  Google Scholar 

  50. Miskovic L, Hatzimanikatis V (2011) Modeling of uncertainties in biochemical reactions. Biotechnol Bioeng 108(2):413–423. doi:10.1002/bit.22932

    Google Scholar 

  51. Xu TR, Vyshemirsky V, Gormand A et al (2010) Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species. Sci Signal 3(134):ra20

    Article  Google Scholar 

Download references

Acknowledgements

We thank the SilicoTryp and GeMInI consortia for their contribution to the research that forms the basis of this review. The SysMO-funded SilicoTryp project aims at the reconstruction of a comprehensive computational model of trypanosome biology. It includes partners from the University of Glasgow, UK, University College London, UK, University of Groningen, NL, University of Heidelberg, Germany, and University of Edinburgh, UK. The GeMInI consortium initiated by the Institute of Tropical Medicine, Antwerp, Belgium, combines large-scale genomic sequencing and metabolomic analysis for a better understanding of the natural diversity of leishmaniasis. It involves partners from the B.P. Koirala Institute of Health Sciences, Nepal, Strathclyde University, UK, Sanger Institute, UK, University of Glasgow, UK, University of Groningen, NL, and the Institute of Tropical Medicine, Antwerp, Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Breitling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Breitling, R., Bakker, B.M., Barrett, M.P., Decuypere, S., Dujardin, JC. (2012). Metabolomic Systems Biology of Protozoan Parasites. In: Suhre, K. (eds) Genetics Meets Metabolomics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1689-0_6

Download citation

Publish with us

Policies and ethics