Skip to main content

Assay Tools for Metabolomics

  • Chapter
  • First Online:
Genetics Meets Metabolomics

Abstract

Metabolomics deals with a comprehensive evaluation of metabolites, which reflect all functional activities, transient effects, and also endpoints of processes in biological systems. Metabolomics provides a snapshot of the physiological state, which is determined by the sum of its genetic composition, regulation of gene expression, protein function, and environmental influence. Successful metabolomic analyses rely on proper experimental design, standardized sample processing, versatile analytical methods, and large scale bioinformatics. This chapter provides an overview on practical aspects of metabolomics including aims, experimental design, as well as methods for sample processing and analytics. It will introduce the reader to the analytical tools like gas and liquid chromatography coupled to mass spectrometry. Moreover, different types of metabolomics such as profiling, non-targeted and targeted metabolomics, which contribute to versatile analyses of the metabolism, will also be discussed. Additionally, details will be provided on the application of metabolomics in human and animal studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMU:

Atomic mass unit

APCI:

Atmospheric pressure chemical ionization

APPI:

Atmospheric pressure photoionization

BMI:

Body mass index

CE:

Capillary electrophoresis

CE-MS:

Capillary electrophoresis mass spectrometry

CI:

Chemical ionization

CID:

Collision-induced dissociation

EI:

Electron impact ionization

ESI:

Electrospray ionization

FIA:

Flow injection analysis

FIA-MS:

Flow injection analysis mass spectrometry

FT-ICR-MS:

Fourier transform ion cyclotron resonance mass spectrometry

FT-IR:

Fourier transform infrared spectrometry

GC:

Gas chromatography

GC-MS:

Gas chromatography mass spectrometry

GWAS:

Genome-wide association studies

HMDB:

Human metabolome database

HPLC:

High performance liquid chromatography

IUPAC:

International union of pure and applied chemistry

KEGG:

Kyoto encyclopedia of genes and genomes

LC:

Liquid chromatography

LC-MS:

Liquid chromatography mass spectrometry

LC-MS/MS:

Liquid chromatography tandem mass spectrometry

LIMS:

Laboratory information and management system

LLOQ:

Lower limit of quantification

LOD:

Limit of detection

LOQ:

Limit of quantification

m/z:

Mass to charge ratio

MRI:

Magnetic resonance imaging

MRM:

Multiple reaction monitoring

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

NMR:

Nuclear magnetic resonance

PBS:

Phosphate buffered saline

PCA:

Principal component analysis

PCI/NCI:

Positive chemical ionization/negative chemical ionization

RF:

Random forest

RP18:

Reversed phase C18 alkyl chain modified silica

SIM:

Single ion monitoring

SOP:

Standard operating procedure

SPE:

Solid phase extraction

SRM:

Selected reaction monitoring

UHPLC:

Ultra high performance liquid chromatography

UHPLC-MS:

Ultra high performance liquid chromatography mass spectrometry

ULOQ:

Upper limit of quantification

References

  1. Pauling L, Robinson AB, Teranishi R, Cary P (1971) Quantitative analysis of urine vapor and breath by gas–liquid partition chromatography. Proc Natl Acad Sci USA 68(10):2374–2376

    Article  PubMed  CAS  Google Scholar 

  2. Ota T, Suzuki Y, Nishikawa T et al (2004) Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet 36(1):40–45

    Article  PubMed  Google Scholar 

  3. Barash Y, Calarco JA, Gao W et al (2010) Deciphering the splicing code. Nature 465(7294):53–59

    Article  PubMed  CAS  Google Scholar 

  4. Caldana C, Degenkolbe T, Cuadros-Inostroza A et al (2011) High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions. Plant J. doi:10.1111/j.1365-313X.2011.04640.x

  5. Griffiths WJ, Wang Y (2009) Mass spectrometry: from proteomics to metabolomics and lipidomics. Chem Soc Rev 38(7):1882–1896

    Article  PubMed  CAS  Google Scholar 

  6. Roessner U, Bowne J (2009) What is metabolomics all about? Biotechniques 46(5):363–365

    Article  PubMed  CAS  Google Scholar 

  7. Tweeddale H, Notley-McRobb L, Ferenci T (1998) Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“metabolome”) analysis. J Bacteriol 180(19):5109–5116

    PubMed  CAS  Google Scholar 

  8. Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29(11):1181–1189

    Article  PubMed  CAS  Google Scholar 

  9. Oresic M (2009) Metabolomics, a novel tool for studies of nutrition, metabolism and lipid dysfunction. Nutr Metab Cardiovasc Dis 19(11):816–824

    Article  PubMed  CAS  Google Scholar 

  10. Ceglarek U, Shackleton C, Stanczyk FZ, Adamski J (2010) Steroid profiling and analytics: going towards sterome. J Steroid Biochem Mol Biol 121(3–5):479–480

    Article  PubMed  CAS  Google Scholar 

  11. Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 48(1–2):155–171

    Article  PubMed  CAS  Google Scholar 

  12. Wishart DS, Knox C, Guo AC et al (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37(Database issue):D603–D610

    Google Scholar 

  13. Fahy E, Subramaniam S, Murphy RC et al (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50(Suppl):S9–14

    Article  PubMed  Google Scholar 

  14. Giavalisco P, Kohl K, Hummel J, Seiwert B, Willmitzer L (2009) 13°C isotope-labeled metabolomes allowing for improved compound annotation and relative quantification in liquid chromatography-mass spectrometry-based metabolomic research. Anal Chem 81(15):6546–6551

    Article  PubMed  CAS  Google Scholar 

  15. Waters NJ, Garrod S, Farrant RD et al (2000) High-resolution magic angle spinning (1)H NMR spectroscopy of intact liver and kidney: optimization of sample preparation procedures and biochemical stability of tissue during spectral acquisition. Anal Biochem 282(1):16–23

    Article  PubMed  CAS  Google Scholar 

  16. Griffin JL (2006) The Cinderella story of metabolic profiling: does metabolomics get to go to the functional genomics ball? Philos Trans R Soc Lond B Biol Sci 361(1465):147–161

    Article  PubMed  Google Scholar 

  17. Lawton KA, Berger A, Mitchell M et al (2008) Analysis of the adult human plasma metabolome. Pharmacogenomics 9(4):383–397

    Article  PubMed  CAS  Google Scholar 

  18. Young BP, Shin JJ, Orij R et al (2010) Phosphatidic acid is a pH biosensor that links membrane biogenesis to metabolism. Science 329(5995):1085–1088

    Article  PubMed  CAS  Google Scholar 

  19. Bais P, Moon SM, He K et al (2010) PlantMetabolomics.org: a web portal for plant metabolomics experiments. Plant Physiol 152(4):1807–1816

    Article  PubMed  CAS  Google Scholar 

  20. Altmaier E, Ramsay SL, Graber A, Mewes HW, Weinberger KM, Suhre K (2008) Bioinformatics analysis of targeted metabolomics–uncovering old and new tales of diabetic mice under medication. Endocrinology 149(7):3478–3489

    Article  PubMed  CAS  Google Scholar 

  21. Altmaier E, Kastenmuller G, Romisch-Margl W et al (2009) Variation in the human lipidome associated with coffee consumption as revealed by quantitative targeted metabolomics. Mol Nutr Food Res 53(11):1357–1365

    Article  PubMed  CAS  Google Scholar 

  22. Goodacre R (2007) Metabolomics of a superorganism. J Nutr 137(1 Suppl):259S–266S

    PubMed  CAS  Google Scholar 

  23. Yuliana ND, Khatib A, Choi YH, Verpoorte R (2011) Metabolomics for bioactivity assessment of natural products. Phytother Res 25(2):157–169

    PubMed  CAS  Google Scholar 

  24. Schmitt-Kopplin P, Gabelica Z, Gougeon RD et al (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc Natl Acad Sci USA 107(7):2763–2768

    Article  PubMed  CAS  Google Scholar 

  25. Halama A, Moller G, Adamski J (2011) Metabolic signatures in apoptotic human cancer cell lines. OMICS 15(5):325–335

    Article  PubMed  CAS  Google Scholar 

  26. Rios-Estepa R, Turner GW, Lee JM, Croteau RB, Lange BM (2008) A systems biology approach identifies the biochemical mechanisms regulating monoterpenoid essential oil composition in peppermint. Proc Natl Acad Sci USA 105(8):2818–2823

    Article  PubMed  CAS  Google Scholar 

  27. Illig T, Gieger C, Zhai G et al (2010) A genome-wide perspective of genetic variation in human metabolism. Nat Genet 42(2):137–141

    Article  PubMed  CAS  Google Scholar 

  28. Koulman A, Lane GA, Harrison SJ, Volmer DA (2009) From differentiating metabolites to biomarkers. Anal Bioanal Chem 394(3):663–670

    Article  PubMed  CAS  Google Scholar 

  29. Ellis DI, Dunn WB, Griffin JL, Allwood JW, Goodacre R (2007) Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics 8(9):1243–1266

    Article  PubMed  CAS  Google Scholar 

  30. Oresic M, Vidal-Puig A, Hanninen V (2006) Metabolomic approaches to phenotype characterization and applications to complex diseases. Expert Rev Mol Diagn 6(4):575–585

    Article  PubMed  CAS  Google Scholar 

  31. Griffiths WJ, Koal T, Wang Y, Kohl M, Enot DP, Deigner HP (2010) Targeted metabolomics for biomarker discovery. Angew Chem Int Ed Engl 49(32):5426–5445

    Article  PubMed  CAS  Google Scholar 

  32. Gowda GA, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D (2008) Metabolomics-based methods for early disease diagnostics. Expert Rev Mol Diagn 8(5):617–633

    Article  PubMed  CAS  Google Scholar 

  33. Hekmatyar SK, Wilson M, Jerome N et al (2010) (1)H nuclear magnetic resonance spectroscopy characterisation of metabolic phenotypes in the medulloblastoma of the SMO transgenic mice. Br J Cancer 103(8):1297–1304

    Article  PubMed  CAS  Google Scholar 

  34. Chace DH, Hillman SL, Van Hove JL, Naylor EW (1997) Rapid diagnosis of MCAD deficiency: quantitative analysis of octanoylcarnitine and other acylcarnitines in newborn blood spots by tandem mass spectrometry. Clin Chem 43(11):2106–2113

    PubMed  CAS  Google Scholar 

  35. Zivkovic AM, Wiest MM, Nguyen UT, Davis R, Watkins SM, German JB (2009) Effects of sample handling and storage on quantitative lipid analysis in human serum. Metabolomics 5(4):507–516

    Article  PubMed  CAS  Google Scholar 

  36. Morrow JD, Roberts LJ 2nd (1994) Mass spectrometry of prostanoids: F2-isoprostanes produced by non-cyclooxygenase free radical-catalyzed mechanism. Methods Enzymol 233:163–174

    Article  PubMed  CAS  Google Scholar 

  37. Römisch-Margl W, Prehn C, Bogumil R, Röhring C, Suhre K, Adamski J (2011) Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics. doi:10.1007/s11306-011-0293-4

  38. Whitfield PD, German AJ, Noble PJ (2004) Metabolomics: an emerging post-genomic tool for nutrition. Br J Nutr 92(4):549–555

    Article  PubMed  CAS  Google Scholar 

  39. Denkert C, Budczies J, Weichert W et al (2008) Metabolite profiling of human colon carcinoma–deregulation of TCA cycle and amino acid turnover. Mol Cancer 7:72

    Article  PubMed  Google Scholar 

  40. Monleon D, Morales JM, Barrasa A, Lopez JA, Vazquez C, Celda B (2009) Metabolite profiling of fecal water extracts from human colorectal cancer. NMR Biomed 22(3):342–348

    Article  PubMed  CAS  Google Scholar 

  41. Hu JZ, Rommereim DN, Minard KR et al (2008) Metabolomics in lung inflammation:a high-resolution (1)h NMR study of mice exposedto silica dust. Toxicol Mech Methods 18(5):385–398

    Article  PubMed  CAS  Google Scholar 

  42. Carraro S, Rezzi S, Reniero F et al (2007) Metabolomics applied to exhaled breath condensate in childhood asthma. Am J Respir Crit Care Med 175(10):986–990

    Article  PubMed  CAS  Google Scholar 

  43. Dunn WB, Ellis DI (2004) Metabolomics: current analytical platforms and methodologies. Trends Anal Chem 24(4):285–294

    Google Scholar 

  44. Suhre K, Meisinger C, Doring A et al (2010) Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One 5(11):e13953

    Article  PubMed  Google Scholar 

  45. Kuchel PW (2010) Models of the human metabolic network: aiming to reconcile metabolomics and genomics. Genome Med 2(7):46

    Article  PubMed  Google Scholar 

  46. Brown SC, Kruppa G, Dasseux JL (2005) Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrom Rev 24(2):223–231

    Article  PubMed  CAS  Google Scholar 

  47. Issaq HJ, Van QN, Waybright TJ, Muschik GM, Veenstra TD (2009) Analytical and statistical approaches to metabolomics research. J Sep Sci 32(13):2183–2199

    Article  PubMed  CAS  Google Scholar 

  48. Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM (2006) Targeted profiling: quantitative analysis of 1 H NMR metabolomics data. Anal Chem 78(13):4430–4442

    Article  PubMed  CAS  Google Scholar 

  49. Koal T, Deigner HP (2010) Challenges in mass spectrometry based targeted metabolomics. Curr Mol Med 10(2):216–226

    Article  PubMed  CAS  Google Scholar 

  50. Griffiths WJ, Karu K, Hornshaw M, Woffendin G, Wang Y (2007) Metabolomics and metabolite profiling: past heroes and future developments. Eur J Mass Spectrom 13(1):45–50

    Article  CAS  Google Scholar 

  51. Zhao X, Fritsche J, Wang J et al (2010) Metabonomic fingerprints of fasting plasma and spot urine reveal human pre-diabetic metabolic traits. Metabolomics 6:362–374

    Article  PubMed  CAS  Google Scholar 

  52. Ohta T, Masutomi N, Tsutsui N et al (2009) Untargeted metabolomic profiling as an evaluative tool of fenofibrate-induced toxicology in Fischer 344 male rats. Toxicol Pathol 37(4):521–535

    Article  PubMed  CAS  Google Scholar 

  53. Sreekumar A, Poisson LM, Rajendiran TM et al (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457(7231):910–914

    Article  PubMed  CAS  Google Scholar 

  54. Kastenmüller G, Römisch-Margl W, Wägele B, Altmeier E, Suhre K (2010) metaP-Server: a web-based metabolomics data analysis tool. J Biomed Biotechnol 2011:ID839862

    Google Scholar 

  55. Wohlgemuth G, Haldiya PK, Willighagen E, Kind T, Fiehn O (2010) The chemical translation service–a web-based tool to improve standardization of metabolomic reports. Bioinformatics 26(20):2647–2648

    Article  PubMed  CAS  Google Scholar 

  56. Sansone SA, Fan T, Goodacre R et al (2007) The metabolomics standards initiative. Nat Biotechnol 25(8):846–848

    Article  PubMed  CAS  Google Scholar 

  57. Haddad I, Hiller K, Frimmersdorf E, Benkert B, Schomburg D, Jahn D (2009) An emergent self-organizing map based analysis pipeline for comparative metabolome studies. Silico Biol 9(4):163–178

    CAS  Google Scholar 

  58. Enot DP, Beckmann M, Overy D, Draper J (2006) Predicting interpretability of metabolome models based on behavior, putative identity, and biological relevance of explanatory signals. Proc Natl Acad Sci USA 103(40):14865–14870

    Article  PubMed  CAS  Google Scholar 

  59. Patterson AD, Li H, Eichler GS et al (2008) UPLC-ESI-TOFMS-based metabolomics and gene expression dynamics inspector self-organizing metabolomic maps as tools for understanding the cellular response to ionizing radiation. Anal Chem 80(3):665–674

    Article  PubMed  CAS  Google Scholar 

  60. Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabonomics. J Proteome Res 6(2):469–479

    Article  PubMed  CAS  Google Scholar 

  61. Holmes E, Nicholls AW, Lindon JC et al (2000) Chemometric models for toxicity classification based on NMR spectra of biofluids. Chem Res Toxicol 13(6):471–478

    Article  PubMed  CAS  Google Scholar 

  62. Kohl M (2011) Standards, databases, and modeling tools in systems biology. Methods Mol Biol 696:413–427

    Article  PubMed  CAS  Google Scholar 

  63. Honour JW (2006) Gas chromatography–mass spectrometry. Methods Mol Biol 324:53–74

    PubMed  CAS  Google Scholar 

  64. Snyder LR, Kirkland JJ, Dolan JW (2009) Introduction to modern liquid chromatography. Wiley, New York

    Book  Google Scholar 

  65. Kortz L, Helmschrodt C, Ceglarek U (2011) Fast liquid chromatography combined with mass spectrometry for the analysis of metabolites and proteins in human body fluids. Anal Bioanal Chem 399(8):2635–2644

    Article  PubMed  CAS  Google Scholar 

  66. Ardrey RE (2003) Liquid chromatography-mass spectrometry: an introduction. Wiley, London

    Book  Google Scholar 

  67. Hübschmann HJ (2008) Handbook of GC/MS. Wiley VCH Verlag GmbH, Weinheim

    Book  Google Scholar 

  68. Mcmaster mC (2005) LC/MS: a practical user’s guide. Wiley, New York

    Book  Google Scholar 

  69. Mims D, Hercules D (2004) Quantification of bile acids directly from plasma by MALDI-TOF-MS. Anal Bioanal Chem 378(5):1322–1326

    Article  PubMed  CAS  Google Scholar 

  70. Breitling R, Pitt AR, Barrett MP (2006) Precision mapping of the metabolome. Trends Biotechnol 24(12):543–548

    Article  PubMed  CAS  Google Scholar 

  71. Murray KK (2010) Glossary of terms for separations coupled to mass spectrometry. J Chromatogr A 1217(25):3922–3928

    Article  PubMed  CAS  Google Scholar 

  72. Schwartz JC, Senko MW, Syka JE (2002) A two-dimensional quadrupole ion trap mass spectrometer. J Am Soc Mass Spectrom 13(6):659–669

    Article  PubMed  CAS  Google Scholar 

  73. Casetta B, Tagliacozzi D, Shushan B, Federici G (2000) Development of a method for rapid quantitation of amino acids by liquid chromatography-tandem mass spectrometry (LC-MSMS) in plasma. Clin Chem Lab Med 38(5):391–401

    Article  PubMed  CAS  Google Scholar 

  74. Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E (2009) Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem 81(16):6656–6667

    Article  PubMed  CAS  Google Scholar 

  75. Dubois F, Knochenmuss R, Zenobi R (1999) Optimization of an ion-to-photon detector for large molecules in mass spectrometry. Rapid Commun Mass Spectrom 13(19):1958–1967

    Article  PubMed  CAS  Google Scholar 

  76. Kromidas S (1999) Validierung in der analytik. Wiley VCH Verlag GmbH, Weinheim

    Google Scholar 

  77. McNaughton AD, Wilkinson A (1997) Compendium of chemical terminology. Blackwell Science, Oxford

    Google Scholar 

  78. Holmes C, McDonald F, Jones M, Ozdemir V, Graham JE (2010) Standardization and omics science: technical and social dimensions are inseparable and demand symmetrical study. OMICS 14(3):327–332

    Article  PubMed  CAS  Google Scholar 

  79. McGaw EA, Phinney KW, Lowenthal MS (2010) Comparison of orthogonal liquid and gas chromatography–mass spectrometry platforms for the determination of amino acid concentrations in human plasma. J Chromatogr A 1217(37):5822–5831

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Adamski Ph.D., M.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Artati, A., Prehn, C., Möller, G., Adamski, J. (2012). Assay Tools for Metabolomics. In: Suhre, K. (eds) Genetics Meets Metabolomics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1689-0_3

Download citation

Publish with us

Policies and ethics