Understanding Cancer Metabolism Through Global Metabolomics

  • Michael V. Milburn
  • Kay A. Lawton
  • Jonathan E. McDunn
  • John A. Ryals
  • Lining Guo
Chapter

Abstract

After a hiatus of nearly 30 years, the interest in and research towards understanding cancer cell growth and function from a metabolic standpoint has returned. Much of the research for the past 30 years has focused entirely on molecular biology and, while some stunning discoveries have been made with regard to oncogenes, other aspects of cancer cells have largely gone unnoticed “as reported by McKnight (Science 330:1338–1339, 2010).” This renewed interest in cancer cell metabolism coincides with the timely development of global metabolomics as a key technology that provides an unrivaled tool for understanding metabolism “as reported by Evans (Anal Chem 81:6656–6667, 2009).” Through this unique ability to monitor the concentration changes in these biochemicals, we are better able to identify and understand metabolic differences in cancer cells relative to normal cells. The focus of this chapter will be to better educate the reader about the importance of understanding cancer metabolism and how global metabolomics is an ideal technology for gaining these new insights.

Keywords

Cholesterol Lactate Glutathione Citrate Lipase 

References

  1. 1.
    Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530PubMedCrossRefGoogle Scholar
  2. 2.
    Stubbs M, Griffiths JR (2010) The altered metabolism of tumors: HIF-1 and its role in the Warburg effect. Adv Enzyme Regul 50:44–55PubMedCrossRefGoogle Scholar
  3. 3.
    Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95PubMedCrossRefGoogle Scholar
  4. 4.
    Riefke B, Mumberg D, Kroemer G et al (2007) Preface. In: Keun K, Steger-Hartmann T, Petersen K et al (eds) Oncogenes meet metabolism. From deregulated genes to a broader understanding of tumour physiology. Springer, BerlinGoogle Scholar
  5. 5.
    Dang CV, Lewis BC, Dolde C, Dang G, Shim H (1997) Oncogenes in tumor metabolism, tumorigenesis, and apoptosis. J Bioenerg Biomembr 29:345–354PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang Y, Dai Y, Wen J et al (2011) Detrimental effects of adenosine signaling in sickle cell disease. Nat Med 17:79–86PubMedCrossRefGoogle Scholar
  7. 7.
    Takei M, Ando Y, Saitoh W et al (2010) Ethylene glycol monomethyl ether-induced toxicity is mediated through the inhibition of flavoprotein dehydrogenase enzyme family. Toxicol Sci 118:643–652PubMedCrossRefGoogle Scholar
  8. 8.
    Barnes VM, Teles R, Trivedi HM et al (2010) Assessment of the effects of dentifrice on periodontal disease biomarkers in gingival crevicular fluid. J Periodontol 81:1273–1279PubMedCrossRefGoogle Scholar
  9. 9.
    Evans AM, Dehaven CD, Barrett T, Mitchell M, Milgram E (2009) Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem 81:6656–6667PubMedCrossRefGoogle Scholar
  10. 10.
    Dehaven CD, Evans AM, Dai H, Lawton KA (2010) Organization of GC/MS and LC/MS metabolomics data into chemical libraries. J Cheminf 2:9CrossRefGoogle Scholar
  11. 11.
    Scatena R, Bottoni P, Pontoglio A, Giardina B (2010) Revisiting the Warburg effect in cancer cells with proteomics. The emergence of new approaches to diagnosis, prognosis and therapy. Proteomics Clin Appl 4:143–158PubMedCrossRefGoogle Scholar
  12. 12.
    Deberardinis RJ, Mancuso A, Daikhin E et al (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104:19345–19350PubMedCrossRefGoogle Scholar
  13. 13.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033PubMedCrossRefGoogle Scholar
  14. 14.
    Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899PubMedCrossRefGoogle Scholar
  15. 15.
    Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266–276PubMedCrossRefGoogle Scholar
  16. 16.
    Sonveaux P, Vegran F, Schroeder T et al (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942PubMedGoogle Scholar
  17. 17.
    Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–777PubMedCrossRefGoogle Scholar
  18. 18.
    Hagland H, Nikolaisen J, Hodneland LI et al (2007) Targeting mitochondria in the treatment of human cancer: a coordinated attack against cancer cell energy metabolism and signalling. Expert Opin Ther Targets 11:1055–1069PubMedCrossRefGoogle Scholar
  19. 19.
    Tong X, Zhao F, Thompson CD (2009) The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr Opin Genet Dev 19:32–37PubMedCrossRefGoogle Scholar
  20. 20.
    Jiang P, Du W, Wang X et al (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13:310–316PubMedCrossRefGoogle Scholar
  21. 21.
    Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773PubMedCrossRefGoogle Scholar
  22. 22.
    Ducray F, Marie Y, Sanson M (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:2248–2249PubMedCrossRefGoogle Scholar
  23. 23.
    De Carli E, Wang X, Puget S (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:2248–2249PubMedCrossRefGoogle Scholar
  24. 24.
    Kang MR, Kim MS, Oh JE et al (2009) Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int J Cancer 125:353–355PubMedCrossRefGoogle Scholar
  25. 25.
    Sjoblom T, Jones S, Wood LD et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274PubMedCrossRefGoogle Scholar
  26. 26.
    Lopez GY, Reitman ZJ, Solomon D et al (2010) IDH1(R132) mutation identified in one human melanoma metastasis, but not correlated with metastases to the brain. Biochem Biophys Res Commun 398:585–587PubMedCrossRefGoogle Scholar
  27. 27.
    Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744PubMedCrossRefGoogle Scholar
  28. 28.
    Bralten LB, Kloosterhof NK, Balvers R et al (2011) IDH1 R132H decreases proliferation of glioma cell lines in vitro and in vivo. Ann Neurol 69:455–463PubMedCrossRefGoogle Scholar
  29. 29.
    Houillier C, Wang X, Kaloshi G et al (2010) IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology 75:1560–1566PubMedCrossRefGoogle Scholar
  30. 30.
    Nomura DK, Long JZ, Niessen S et al (2010) Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140:49–61PubMedCrossRefGoogle Scholar
  31. 31.
    Janardhan S, Srivani P, Sastry GN (2006) Choline kinase: an important target for cancer. Curr Med Chem 13:1169–1186PubMedCrossRefGoogle Scholar
  32. 32.
    Glunde K, Serkova NJ (2006) Therapeutic targets and biomarkers identified in cancer choline phospholipid metabolism. Pharmacogenomics 7:1109–1123PubMedCrossRefGoogle Scholar
  33. 33.
    Estrela JM, Ortega A, Obrador E (2006) Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43:143–181PubMedCrossRefGoogle Scholar
  34. 34.
    Sorensen RB, Hadrup SR, Svane IM et al (2011) Indoleamine 2,3-dioxygenase specific, cytotoxic T cells as immune regulators. Blood 117:2200–2210PubMedCrossRefGoogle Scholar
  35. 35.
    Sas K, Robotka H, Toldi J, Vecsei L (2007) Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 257:221–239PubMedCrossRefGoogle Scholar
  36. 36.
    Kallberg E, Wikstrom P, Bergh A, Ivars F, Leanderson T (2010) Indoleamine 2,3-dioxygenase (IDO) activity influence tumor growth in the TRAMP prostate cancer model. Prostate 70:1461–1470PubMedCrossRefGoogle Scholar
  37. 37.
    Leung BS, Stout LE, Shaskan EG, Thompson RM (1992) Differential induction of indoleamine-2,3-dioxygenase (IDO) by interferon-gamma in human gynecologic cancer cells. Cancer Lett 66:77–81PubMedCrossRefGoogle Scholar
  38. 38.
    Karanikas V, Zamanakou M, Kerenidi T et al (2007) Indoleamine 2,3-dioxygenase (IDO) expression in lung cancer. Cancer Biol Ther 6:1258–1262PubMedCrossRefGoogle Scholar
  39. 39.
    Prendergast GC, Metz R, Muller AJ (2010) Towards a genetic definition of cancer-associated inflammation: role of the IDO pathway. Am J Pathol 176:2082–2087PubMedCrossRefGoogle Scholar
  40. 40.
    Macchiarulo A, Camaioni E, Nuti R, Pellicciari R (2009) Highlights at the gate of tryptophan catabolism: a review on the mechanisms of activation and regulation of indoleamine 2,3-­dioxygenase (IDO), a novel target in cancer disease. Amino Acids 37:219–229PubMedCrossRefGoogle Scholar
  41. 41.
    Lee SY, Choi HK, Lee KJ et al (2009) The immune tolerance of cancer is mediated by IDO that is inhibited by COX-2 inhibitors through regulatory T cells. J Immunother 32:22–28PubMedCrossRefGoogle Scholar
  42. 42.
    Inaba T, Ino K, Kajiyama H et al (2010) Indoleamine 2,3-dioxygenase expression predicts impaired survival of invasive cervical cancer patients treated with radical hysterectomy. Gynecol Oncol 117:423–428PubMedCrossRefGoogle Scholar
  43. 43.
    Liu X, Newton RC, Friedman SM, Scherle PA (2009) Indoleamine 2,3-dioxygenase, an emerging target for anti-cancer therapy. Curr Cancer Drug Targets 9:938–952PubMedCrossRefGoogle Scholar
  44. 44.
    Olsen LS, Hjarnaa PJ, Latini S et al (2004) Anticancer agent CHS 828 suppresses nuclear factor-kappa B activity in cancer cells through downregulation of IKK activity. Int J Cancer 111:198–205PubMedCrossRefGoogle Scholar
  45. 45.
    Watson M, Roulston A, Belec L et al (2009) The small molecule GMX1778 is a potent inhibitor of NAD  +  biosynthesis: strategy for enhanced therapy in nicotinic acid phosphoribosyltransferase 1-deficient tumors. Mol Cell Biol 29:5872–5888PubMedCrossRefGoogle Scholar
  46. 46.
    Roulston A, Watson M, Bernier C et al (2007) GMX1777: a novel inhibitor of NAD  +­  biosynthesis via inhibition of nicotinamide phosphoribosyl transferase. American Association of Cancer Research-NCI-EORTC international conference on molecular targets and cancer therapeutics [Online]Google Scholar
  47. 47.
    Beauparlant P, Bedard D, Bernier C et al (2009) Preclinical development of the nicotinamide phosphoribosyl transferase inhibitor prodrug GMX1777. Anticancer Drugs 20:346–354PubMedCrossRefGoogle Scholar
  48. 48.
    Sreekumar A, Poisson LM, Rajendiran TM et al (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457:910–914PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Michael V. Milburn
    • 1
  • Kay A. Lawton
    • 1
  • Jonathan E. McDunn
    • 2
  • John A. Ryals
    • 3
  • Lining Guo
    • 1
  1. 1.Research and DevelopmentMetabolon, IncDurhamUSA
  2. 2.Oncology Research and DevelopmentMetabolon, IncDurhamUSA
  3. 3.Metabolon, IncDurhamUSA

Personalised recommendations