Models for Populations with Spatial Structure

Part of the Texts in Applied Mathematics book series (TAM, volume 40)


Populations may be structured by spatial location. There are two common different ways to include spatial location in a population. One way is by means of metapopulations, that is, populations of populations, with links between them such as a collection of towns and cities connected by a transportation network. The air transport subnetwork includes connecting links between distant communities, and we may study the dynamics of populations of different cities as a function of the flow of people between them and their own local dynamics in this framework. A metapopulation may be divided into patches, with each patch corresponding to a separate location. The corresponding models may be systems of ordinary differential equations, with the population size of each species in each patch as a variable. Thus metapopulation models are often systems of ordinary differential equations of high dimension. Some basic references are Hanski (1999), Hanski and Gilpin (1997), Levin, Powell and Steele (1993), Neuhauser (2001).


Spatial Structure Diffusion Equation Metapopulation Model Nonlinear Reaction Cable Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Mathematical and Computational Modeling Sciences Center (MCMSC)Arizona State UniversityTempeUSA

Personalised recommendations