Models for Populations with Age Structure

Part of the Texts in Applied Mathematics book series (TAM, volume 40)


In the preceding chapters we studied mainly models in which all members were alike, so that birth and death rates depended on total population size. However, we gave a few examples of populations with two classes of members and a birth rate that depended on the size of only one of the two classes, for discrete models in Section 2.6 and for continuous models in Section 3.3. These are examples of structured populations. In this chapter we shall study models for populations structured by age. In practice, animal populations are often measured by size with age structure used as an approximation to size structure. The study of age-structured models is considerably simpler than the study of general size-structured models, primarily because age increases linearly with the passage of time while the linkage of size with time may be less predictable. Age-structured models may be either discrete or continuous. We begin with linear models, for which total population size generally either increases or decreases exponentially over time.


Total Population Size Renewal Equation Frobenius Theorem Leslie Matrix Leslie Matrix Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Mathematical and Computational Modeling Sciences Center (MCMSC)Arizona State UniversityTempeUSA

Personalised recommendations