Skip to main content

Cohesin and Human Diseases

  • Chapter
  • First Online:
Gene Regulatory Sequences and Human Disease

Abstract

Cohesin is a four-protein complex capable of tethering sister chromatid strands together. With the help of multiple facilitating proteins, cohesin plays essential cellular functions in sister chromatid cohesion during mitosis and meiosis, DNA repair, gene expression, and maintaining 3-D genome organization. Cohesin is required for cell division, maintaining pluripotency of stem cells and ensuring normal organ development. Defective cohesin genes have been associated with several rare human developmental disorders including Cornelia de Lange syndrome and Roberts/SC phocomelia syndrome, as well as several malignancies. Here, we provide an overview of cohesion biology and our current understanding as to how cohesin defects cause human disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATM:

Ataxia telangiectasia mutated

ATR:

ATM- and Rad3-related

ATRX:

Thalassemia/mental retardation syndrome X-linked

BRCA1:

Breast cancer 1 early onset 1

CdLS:

Cornelia de Lange syndrome

Chk1:

Checkpoint kinase 1

Chl1:

PCNA and chromosome loss 1

CIN:

Chromosomal instability

CTCF:

CCCTC-binding factor

Ctf18:

Chromosome transmission fidelity 18

DDX11:

DEAD/H box polypeptide 11

DSB:

Double-strand break

EcR-B1:

Ecdysone receptor B1

EEG:

Electroencephalography

Elg1:

Enhanced level of genomic instability 1

FRAP:

Fluorescence recovery after photobleaching

GERD:

Gastroesophageal reflux disease

Hb H:

Hemoglobin H

HMR:

Hidden MAT Right

HP1γ:

Heterochromatin protein 1 γ

HR:

Heterochromatic repulsion

IFNG:

Interferon-gamma

MDC1:

Mediator of DNA damage checkpoint 1

NHEJ:

Nonhomologous end-joining

NIPBL:

Nipped-B homologue

PDS5:

Precocious dissociation of sisters 5

PP2A:

Protein phosphatase type A

PTTG:

Proto-oncogene pituitary tumor-transforming gene

RBS:

Roberts syndrome

RNF168:

Ring finger protein 168

SCC:

Sister chromatid cohesion

SMC:

Structural maintenance of chromosome

TH :

T helper

Wapl1:

Wings apart-like 1

WBS:

Warsaw breakage syndrome

References

  • Andrade MA, Bork P (1995) HEAT repeats in the Huntington’s disease protein. Nat Genet 11(2):115–116

    Article  PubMed  CAS  Google Scholar 

  • Arumugam P et al (2003) ATP hydrolysis is required for cohesin’s association with chromosomes. Curr Biol 13(22):1941–1953

    Article  PubMed  CAS  Google Scholar 

  • Bannister LA et al (2004) Positional cloning and characterization of mouse mei8, a disrupted allele of the meiotic cohesin Rec8. Genesis 40(3):184–194

    Article  PubMed  CAS  Google Scholar 

  • Barber TD et al (2008) Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc Natl Acad Sci USA 105(9):3443–3448

    Article  PubMed  CAS  Google Scholar 

  • Bauerschmidt C et al (2011) Cohesin phosphorylation and mobility of SMC1 at ionizing radiation-induced DNA double-strand breaks in human cells. Exp Cell Res 317(3):330–337

    Article  PubMed  CAS  Google Scholar 

  • Bell AC, Felsenfeld G (2000) Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405(6785):482–485

    Article  PubMed  CAS  Google Scholar 

  • Bernard P et al (2006) A screen for cohesion mutants uncovers Ssl3, the fission yeast counterpart of the cohesin loading factor Scc4. Curr Biol 16(9):875–881

    Article  PubMed  CAS  Google Scholar 

  • Berney TP, Ireland M, Burn J (1999) Behavioural phenotype of Cornelia de Lange syndrome. Arch Dis Child 81(4):333–336

    Article  PubMed  CAS  Google Scholar 

  • Birkenbihl RP, Subramani S (1992) Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double-strand-break repair. Nucleic Acids Res 20(24):6605–6611

    Article  PubMed  CAS  Google Scholar 

  • Blyth K, Cameron ER, Neil JC (2005) The RUNX genes: gain or loss of function in cancer. Nat Rev Cancer 5(5):376–387

    Article  PubMed  CAS  Google Scholar 

  • Borck G et al (2006) Father-to-daughter transmission of Cornelia de Lange syndrome caused by a mutation in the 5′ untranslated region of the NIPBL Gene. Hum Mutat 27(8):731–735

    Article  PubMed  CAS  Google Scholar 

  • Bose T, Gerton JL (2010) Cohesinopathies, gene expression, and chromatin organization. J Cell Biol 189(2):201–210

    Article  PubMed  CAS  Google Scholar 

  • Bowers SR et al (2009) A conserved insulator that recruits CTCF and cohesin exists between the closely related but divergently regulated interleukin-3 and granulocyte-macrophage colony-stimulating factor genes. Mol Cell Biol 29(7):1682–1693

    Article  PubMed  CAS  Google Scholar 

  • Brachmann W (1916) Ein fall von symmetrischer monodaktylie durch Ulnadefekt, mit symmetrischer flughautbildung in den ellenbeugen, sowie anderen abnormitaten (zwerghaftogkeit, halsrippen, behaarung). Jarb Kinder Phys Erzie 84:225–235

    Google Scholar 

  • Canudas S, Smith S (2009) Differential regulation of telomere and centromere cohesion by the Scc3 homologues SA1 and SA2, respectively, in human cells. J Cell Biol 187(2):165–173

    Article  PubMed  CAS  Google Scholar 

  • Chang CR et al (2005) Targeting of cohesin by transcriptionally silent chromatin. Genes Dev 19(24):3031–3042

    Article  PubMed  CAS  Google Scholar 

  • Chien R et al (2011) Cohesin mediates chromatin interactions that regulate mammalian beta-globin expression. J Biol Chem 286(20):17870–17878

    Article  PubMed  CAS  Google Scholar 

  • Ciosk R et al (2000) Cohesin’s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell 5(2):243–254

    Article  PubMed  CAS  Google Scholar 

  • Darwiche N, Freeman LA, Strunnikov A (1999) Characterization of the components of the putative mammalian sister chromatid cohesion complex. Gene 233(1–2):39–47

    Article  PubMed  CAS  Google Scholar 

  • Deardorff MA et al (2007) Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of cornelia de Lange syndrome with predominant mental retardation. Am J Hum Genet 80(3):485–494

    Article  PubMed  CAS  Google Scholar 

  • Donze D et al (1999) The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev 13(6):698–708

    Article  PubMed  CAS  Google Scholar 

  • Dorsett D (2007) Roles of the sister chromatid cohesion apparatus in gene expression, development, and human syndromes. Chromosoma 116(1):1–13

    Article  PubMed  Google Scholar 

  • Dorsett D et al (2005) Effects of sister chromatid cohesion proteins on cut gene expression during wing development in Drosophila. Development 132(21):4743–4753

    Article  PubMed  CAS  Google Scholar 

  • Engel N et al (2008) Three-dimensional conformation at the H19/Igf2 locus supports a model of enhancer tracking. Hum Mol Genet 17(19):3021–3029

    Article  PubMed  CAS  Google Scholar 

  • Feeney KM, Wasson CW, Parish JL (2010) Cohesin: a regulator of genome integrity and gene expression. Biochem J 428(2):147–161

    Article  PubMed  CAS  Google Scholar 

  • Froster UG, Gortner L (1993) Thrombocytopenia in the Brachmann-de Lange syndrome. Am J Med Genet 46(6):730–731

    Article  PubMed  CAS  Google Scholar 

  • Galikova M et al (2011) Steroid hormone regulation of C. elegans and Drosophila aging and life history. Exp Gerontol 46(2–3):141–147

    Article  PubMed  CAS  Google Scholar 

  • Gandhi R, Gillespie PJ, Hirano T (2006) Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr Biol 16(24):2406–2417

    Article  PubMed  CAS  Google Scholar 

  • Garg R et al (2004) Chromatin association of rad17 is required for an ataxia telangiectasia and rad-related kinase-mediated S-phase checkpoint in response to low-dose ultraviolet radiation. Mol Cancer Res 2(6):362–369

    PubMed  CAS  Google Scholar 

  • Gause M et al (2010) Dosage-sensitive regulation of cohesin chromosome binding and dynamics by Nipped-B, Pds5, and Wapl. Mol Cell Biol 30(20):4940–4951

    Article  PubMed  CAS  Google Scholar 

  • Gerlich D et al (2006) Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication. Curr Biol 16(15):1571–1578

    Article  PubMed  CAS  Google Scholar 

  • German J (1979) Roberts’ syndrome. I. Cytological evidence for a disturbance in chromatid pairing. Clin Genet 16(6):441–447

    Article  PubMed  CAS  Google Scholar 

  • Gibbons RJ et al (1995) Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X syndrome). Cell 80(6):837–845

    Article  PubMed  CAS  Google Scholar 

  • Gillis LA et al (2004) NIPBL mutational analysis in 120 individuals with Cornelia de Lange syndrome and evaluation of genotype-phenotype correlations. Am J Hum Genet 75(4):610–623

    Article  PubMed  CAS  Google Scholar 

  • Gordillo M et al (2008) The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity. Hum Mol Genet 17(14):2172–2180

    Article  PubMed  CAS  Google Scholar 

  • Gruber S, Haering CH, Nasmyth K (2003) Chromosomal cohesin forms a ring. Cell 112(6):765–777

    Article  PubMed  CAS  Google Scholar 

  • Guacci V, Koshland D, Strunnikov A (1997) A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91(1):47–57

    Article  PubMed  CAS  Google Scholar 

  • Gullerova M, Proudfoot NJ (2008) Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell 132(6):983–995

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Caballero C et al (2011) Identification and molecular characterization of the mammalian alpha-kleisin RAD21L. Cell Cycle 10(9):1477–1487

    Article  PubMed  CAS  Google Scholar 

  • Hadjur S et al (2009) Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 460(7253):410–413

    PubMed  CAS  Google Scholar 

  • Haering CH et al (2002) Molecular architecture of SMC proteins and the yeast cohesin complex. Mol Cell 9(4):773–788

    Article  PubMed  CAS  Google Scholar 

  • Haering CH et al (2008) The cohesin ring concatenates sister DNA molecules. Nature 454(7202):297–301

    Article  PubMed  CAS  Google Scholar 

  • Hallson G et al (2008) The Drosophila cohesin subunit Rad21 is a trithorax group (trxG) protein. Proc Natl Acad Sci USA 105(34):12405–12410

    Article  PubMed  CAS  Google Scholar 

  • Hark AT et al (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405(6785):486–489

    Article  PubMed  CAS  Google Scholar 

  • Hartlerode AJ, Scully R (2009) Mechanisms of double-strand break repair in somatic mammalian cells. Biochem J 423(2):157–168

    Article  PubMed  CAS  Google Scholar 

  • Hauf S, Waizenegger IC, Peters JM (2001) Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 293(5533):1320–1323

    Article  PubMed  CAS  Google Scholar 

  • Hauf S et al (2005) Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol 3(3):e69

    Article  PubMed  CAS  Google Scholar 

  • Heidinger-Pauli JM, Unal E, Koshland D (2009) Distinct targets of the Eco1 acetyltransferase modulate cohesion in S phase and in response to DNA damage. Mol Cell 34(3):311–321

    Article  PubMed  CAS  Google Scholar 

  • Heidinger-Pauli JM, Onn I, Koshland D (2010) Genetic evidence that the acetylation of the Smc3p subunit of cohesin modulates its ATP-bound state to promote cohesion establishment in Saccharomyces cerevisiae. Genetics 185(4):1249–1256

    Article  PubMed  CAS  Google Scholar 

  • Herran Y et al (2011) The cohesin subunit RAD21L functions in meiotic synapsis and exhibits sexual dimorphism in fertility. EMBO J 30(15):3091–3105

    Article  PubMed  CAS  Google Scholar 

  • Horsfield JA et al (2007) Cohesin-dependent regulation of Runx genes. Development 134(14):2639–2649

    Article  PubMed  CAS  Google Scholar 

  • Hou F, Zou H (2005) Two human orthologues of Eco1/Ctf7 acetyltransferases are both required for proper sister-chromatid cohesion. Mol Biol Cell 16(8):3908–3918

    Article  PubMed  CAS  Google Scholar 

  • Hou C, Dale R, Dean A (2010) Cell type specificity of chromatin organization mediated by CTCF and cohesin. Proc Natl Acad Sci USA 107(8):3651–3656

    Article  PubMed  CAS  Google Scholar 

  • Hyman P, Oliver C, Hall S (2002) Self-injurious behavior, self-restraint, and compulsive behaviors in Cornelia de Lange syndrome. Am J Ment Retard 107(2):146–154

    Article  PubMed  Google Scholar 

  • Inoue A et al (2007) Loss of ChlR1 helicase in mouse causes lethality due to the accumulation of aneuploid cells generated by cohesion defects and placental malformation. Cell Cycle 6(13):1646–1654

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro K et al (2011) A new meiosis-specific cohesin complex implicated in the cohesin code for homologous pairing. EMBO Rep 12(3):267–275

    Article  PubMed  CAS  Google Scholar 

  • Ito Y (2004) Oncogenic potential of the RUNX gene family: ‘overview’. Oncogene 23(24):4198–4208

    Article  PubMed  CAS  Google Scholar 

  • Ivanov D, Nasmyth K (2007) A physical assay for sister chromatid cohesion in vitro. Mol Cell 27(2):300–310

    Article  PubMed  CAS  Google Scholar 

  • Jackson L et al (1993) de Lange syndrome: a clinical review of 310 individuals. Am J Med Genet 47(7):940–946

    Article  PubMed  CAS  Google Scholar 

  • Jallepalli PV et al (2001) Securin is required for chromosomal stability in human cells. Cell 105(4):445–457

    Article  PubMed  CAS  Google Scholar 

  • Kaga K et al (1995) Auditory brainstem responses in children with Cornelia de Lange syndrome. Int J Pediatr Otorhinolaryngol 31(2–3):137–146

    Article  PubMed  CAS  Google Scholar 

  • Kagey MH et al (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467(7314):430–435

    Article  PubMed  CAS  Google Scholar 

  • Kaur M et al (2005) Precocious sister chromatid separation (PSCS) in Cornelia de Lange syndrome. Am J Med Genet A 138(1):27–31

    PubMed  Google Scholar 

  • Kawauchi S et al (2009) Multiple organ system defects and transcriptional dysregulation in the Nipbl(+/−) mouse, a model of Cornelia de Lange Syndrome. PLoS Genet 5(9):e1000650

    Article  PubMed  CAS  Google Scholar 

  • Kenna MA, Skibbens RV (2003) Mechanical link between cohesion establishment and DNA replication: Ctf7p/Eco1p, a cohesion establishment factor, associates with three different replication factor C complexes. Mol Cell Biol 23(8):2999–3007

    Article  PubMed  CAS  Google Scholar 

  • Kim ST, Xu B, Kastan MB (2002) Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev 16(5):560–570

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa R et al (2004) Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev 18(12):1423–1438

    Article  PubMed  CAS  Google Scholar 

  • Klein F et al (1999) A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98(1):91–103

    Article  PubMed  CAS  Google Scholar 

  • Kline AD, Barr M, Jackson LG (1993) Growth manifestations in the Brachmann-de Lange syndrome. Am J Med Genet 47(7):1042–1049

    Article  PubMed  CAS  Google Scholar 

  • Kline AD et al (2007a) Cornelia de Lange syndrome: clinical review, diagnostic and scoring systems, and anticipatory guidance. Am J Med Genet A 143A(12):1287–1296

    Article  PubMed  Google Scholar 

  • Kline AD et al (2007b) Natural history of aging in Cornelia de Lange syndrome. Am J Med Genet C Semin Med Genet 145C(3):248–260

    Article  PubMed  Google Scholar 

  • Kobayashi J et al (2004) NBS1 and its functional role in the DNA damage response. DNA Repair (Amst) 3(8–9):855–861

    Article  CAS  Google Scholar 

  • Koshland D, Hartwell LH (1987) The structure of sister minichromosome DNA before anaphase in Saccharomyces cerevisiae. Science 238(4834):1713–1716

    Article  PubMed  CAS  Google Scholar 

  • Krantz ID et al (2004) Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat Genet 36(6):631–635

    Article  PubMed  CAS  Google Scholar 

  • Kueng S et al (2006) Wapl controls the dynamic association of cohesin with chromatin. Cell 127(5):955–967

    Article  PubMed  CAS  Google Scholar 

  • Kuroda M et al (2005) The human papillomavirus E6 and E7 inducible oncogene, hWAPL, exhibits potential as a therapeutic target. Br J Cancer 92(2):290–293

    PubMed  CAS  Google Scholar 

  • Kurukuti S et al (2006) CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci USA 103(28):10684–10689

    Article  PubMed  CAS  Google Scholar 

  • Kwiatkowski BA et al (2004) Identification and cloning of a novel chromatin-associated protein partner of Epstein-Barr nuclear protein 2. Exp Cell Res 300(1):223–233

    Article  PubMed  CAS  Google Scholar 

  • Lange D (1933) Sur un type nouveau de d’eg’en’eration (typus Amstelodamensis). Arch Med Enfants 36:713–719

    Google Scholar 

  • Lee J, Hirano T (2011) RAD21L, a novel cohesin subunit implicated in linking homologous chromosomes in mammalian meiosis. J Cell Biol 192(2):263–276

    Article  PubMed  CAS  Google Scholar 

  • Lee T, Lee A, Luo L (1999) Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126(18):4065–4076

    PubMed  CAS  Google Scholar 

  • Lengronne A et al (2004) Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430(6999):573–578

    Article  PubMed  CAS  Google Scholar 

  • Lengronne A et al (2006) Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. Mol Cell 23(6):787–799

    Article  PubMed  CAS  Google Scholar 

  • Li T et al (2008) CTCF regulates allelic expression of Igf2 by orchestrating a promoter-polycomb repressive complex 2 intrachromosomal loop. Mol Cell Biol 28(20):6473–6482

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Krantz ID (2008) Cohesin and human disease. Annu Rev Genomics Hum Genet 9:303–320

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Krantz ID (2009) Cornelia de Lange syndrome, cohesin, and beyond. Clin Genet 76(4):303–314

    Article  PubMed  CAS  Google Scholar 

  • Liu J et al (2009) Transcriptional dysregulation in NIPBL and cohesin mutant human cells. PLoS Biol 7(5):e1000119

    Article  PubMed  CAS  Google Scholar 

  • Losada A, Hirano T (2005) Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev 19(11):1269–1287

    Article  PubMed  CAS  Google Scholar 

  • Luzzani S et al (2003) Gastroesophageal reflux and Cornelia de Lange syndrome: typical and atypical symptoms. Am J Med Genet A 119A(3):283–287

    Article  PubMed  CAS  Google Scholar 

  • Masumoto K, Izaki T, Arima T (2001) Cornelia de Lange syndrome associated with cecal volvulus: report of a case. Acta Paediatr 90(6):701–703

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML et al (2001) Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Mol Cell 7(5):959–970

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML et al (2004) Identification of protein complexes required for efficient sister chromatid cohesion. Mol Biol Cell 15(4):1736–1745

    Article  PubMed  CAS  Google Scholar 

  • Mc Intyre J et al (2007) In vivo analysis of cohesin architecture using FRET in the budding yeast Saccharomyces cerevisiae. EMBO J 26(16):3783–3793

    Article  PubMed  CAS  Google Scholar 

  • McNairn AJ, Gerton JL (2009) Intersection of ChIP and FLIP, genomic methods to study the dynamics of the cohesin proteins. Chromosome Res 17(2):155–163

    Article  PubMed  CAS  Google Scholar 

  • Mehta AV, Ambalavanan SK (1997) Occurrence of congenital heart disease in children with Brachmann-de Lange syndrome. Am J Med Genet 71(4):434–435

    Article  PubMed  CAS  Google Scholar 

  • Melby TE et al (1998) The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge. J Cell Biol 142(6):1595–1604

    Article  PubMed  CAS  Google Scholar 

  • Merkenschlager M (2010) Cohesin: a global player in chromosome biology with local ties to gene regulation. Curr Opin Genet Dev 20(5):555–561

    Article  PubMed  CAS  Google Scholar 

  • Michaelis C, Ciosk R, Nasmyth K (1997) Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91(1):35–45

    Article  PubMed  CAS  Google Scholar 

  • Misulovin Z et al (2008) Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma 117(1):89–102

    Article  PubMed  CAS  Google Scholar 

  • Moldovan GL, Pfander B, Jentsch S (2006) PCNA controls establishment of sister chromatid cohesion during S phase. Mol Cell 23(5):723–732

    Article  PubMed  CAS  Google Scholar 

  • Monnich M et al (2011) A zebrafish model of Roberts syndrome reveals that Esco2 depletion interferes with development by disrupting the cell cycle. PLoS One 6(5):e20051

    Article  PubMed  CAS  Google Scholar 

  • Moss J et al (2005) The association between environmental events and self-injurious behaviour in Cornelia de Lange syndrome. J Intellect Disabil Res 49(Pt 4):269–277

    Article  PubMed  CAS  Google Scholar 

  • Murray AW, Szostak JW (1985) Chromosome segregation in mitosis and meiosis. Annu Rev Cell Biol 1:289–315

    Article  PubMed  CAS  Google Scholar 

  • Murrell A, Heeson S, Reik W (2004) Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet 36(8):889–893

    Article  PubMed  CAS  Google Scholar 

  • Musio A et al (2006) X-linked Cornelia de Lange syndrome owing to SMC1L1 mutations. Nat Genet 38(5):528–530

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K, Haering CH (2009) Cohesin: its roles and mechanisms. Annu Rev Genet 43:525–558

    Article  PubMed  CAS  Google Scholar 

  • Nativio R et al (2009) Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. PLoS Genet 5(11):e1000739

    Article  PubMed  CAS  Google Scholar 

  • Neuwald AF, Hirano T (2000) HEAT repeats associated with condensins, cohesins, and other complexes involved in chromosome-related functions. Genome Res 10(10):1445–1452

    Article  PubMed  CAS  Google Scholar 

  • Newman JJ, Young RA (2010) Connecting transcriptional control to chromosome structure and human disease. Cold Spring Harb Symp Quant Biol 75:227–235

    Article  PubMed  CAS  Google Scholar 

  • Ohbayashi T et al (2007) Unscheduled overexpression of human WAPL promotes chromosomal instability. Biochem Biophys Res Commun 356(3):699–704

    Article  PubMed  CAS  Google Scholar 

  • Ohlsson R, Bartkuhn M, Renkawitz R (2010) CTCF shapes chromatin by multiple mechanisms: the impact of 20 years of CTCF research on understanding the workings of chromatin. Chromosoma 119(4):351–360

    Article  PubMed  CAS  Google Scholar 

  • Oikawa K et al (2004) Expression of a novel human gene, human wings apart-like (hWAPL), is associated with cervical carcinogenesis and tumor progression. Cancer Res 64(10):3545–3549

    Article  PubMed  CAS  Google Scholar 

  • Oikawa K et al (2008) Expression of various types of alternatively spliced WAPL transcripts in human cervical epithelia. Gene 423(1):57–62

    Article  PubMed  CAS  Google Scholar 

  • Oka Y et al (2011) Recruitment of the cohesin loading factor NIPBL to DNA double-strand breaks depends on MDC1, RNF168 and HP1gamma in human cells. Biochem Biophys Res Commun 411(4):762–767

    Article  PubMed  CAS  Google Scholar 

  • Oliveira RA et al (2010) Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei. Nat Cell Biol 12(2):185–192

    Article  PubMed  CAS  Google Scholar 

  • Opitz JM (1985) The Brachmann-de Lange syndrome. Am J Med Genet 22(1):89–102

    Article  PubMed  CAS  Google Scholar 

  • Pandey R, Heidmann S, Lehner CF (2005) Epithelial re-organization and dynamics of progression through mitosis in Drosophila separase complex mutants. J Cell Sci 118(Pt 4):733–742

    Article  PubMed  CAS  Google Scholar 

  • Panizza S et al (2000) Pds5 cooperates with cohesin in maintaining sister chromatid cohesion. Curr Biol 10(24):1557–1564

    Article  PubMed  CAS  Google Scholar 

  • Parelho V et al (2008) Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132(3):422–433

    Article  PubMed  CAS  Google Scholar 

  • Parnas O et al (2009) The ELG1 clamp loader plays a role in sister chromatid cohesion. PLoS One 4(5):e5497

    Article  PubMed  CAS  Google Scholar 

  • Pauli A et al (2008) Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Dev Cell 14(2):239–251

    Article  PubMed  CAS  Google Scholar 

  • Pauli A et al (2010) A direct role for cohesin in gene regulation and ecdysone response in Drosophila salivary glands. Curr Biol 20(20):1787–1798

    Article  PubMed  CAS  Google Scholar 

  • Peters JM, Bhaskara V (2009) Cohesin acetylation: from antiestablishment to establishment. Mol Cell 34(1):1–2

    Article  PubMed  CAS  Google Scholar 

  • Petronczki M et al (2004) Sister-chromatid cohesion mediated by the alternative RF-CCtf18/Dcc1/Ctf8, the helicase Chl1 and the polymerase-alpha-associated protein Ctf4 is essential for chromatid disjunction during meiosis II. J Cell Sci 117(Pt 16):3547–3559

    Article  PubMed  CAS  Google Scholar 

  • Potts PR, Porteus MH, Yu H (2006) Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J 25(14):3377–3388

    Article  PubMed  CAS  Google Scholar 

  • Prieto I et al (2001) Mammalian STAG3 is a cohesin specific to sister chromatid arms in meiosis I. Nat Cell Biol 3(8):761–766

    Article  PubMed  CAS  Google Scholar 

  • Qiu X et al (2008) A complex deoxyribonucleic acid looping configuration associated with the silencing of the maternal Igf2 allele. Mol Endocrinol 22(6):1476–1488

    Article  PubMed  CAS  Google Scholar 

  • Revenkova E et al (2004) Cohesin SMC1 beta is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat Cell Biol 6(6):555–562

    Article  PubMed  CAS  Google Scholar 

  • Rhodes JM et al (2010) Positive regulation of c-Myc by cohesin is direct, and evolutionarily conserved. Dev Biol 344(2):637–649

    Article  PubMed  CAS  Google Scholar 

  • Ritchie K et al (2008) Loss of ATRX leads to chromosome cohesion and congression defects. J Cell Biol 180(2):315–324

    Article  PubMed  CAS  Google Scholar 

  • Rolef Ben-Shahar T et al (2008) Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321(5888):563–566

    Article  PubMed  CAS  Google Scholar 

  • Rollins RA, Morcillo P, Dorsett D (1999) Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics 152(2):577–593

    PubMed  CAS  Google Scholar 

  • Rollins RA et al (2004) Drosophila nipped-B protein supports sister chromatid cohesion and opposes the stromalin/Scc3 cohesion factor to facilitate long-range activation of the cut gene. Mol Cell Biol 24(8):3100–3111

    Article  PubMed  CAS  Google Scholar 

  • Roposch A et al (2004) Orthopaedic manifestations of Brachmann-de Lange syndrome: a report of 34 patients. J Pediatr Orthop B 13(2):118–122

    Article  PubMed  Google Scholar 

  • Rowland BD et al (2009) Building sister chromatid cohesion: smc3 acetylation counteracts an antiestablishment activity. Mol Cell 33(6):763–774

    Article  PubMed  CAS  Google Scholar 

  • Rubio ED et al (2008) CTCF physically links cohesin to chromatin. Proc Natl Acad Sci USA 105(24):8309–8314

    Article  PubMed  CAS  Google Scholar 

  • Russell KL et al (2001) Dominant paternal transmission of Cornelia de Lange syndrome: a new case and review of 25 previously reported familial recurrences. Am J Med Genet 104(4):267–276

    Article  PubMed  CAS  Google Scholar 

  • Ryu B et al (2007) Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PLoS One 2(7):e594

    Article  PubMed  CAS  Google Scholar 

  • Sakai A et al (2003) Condensin but not cohesin SMC heterodimer induces DNA reannealing through protein-protein assembly. EMBO J 22(11):2764–2775

    Article  PubMed  CAS  Google Scholar 

  • Sataloff RT et al (1990) Cornelia de Lange syndrome. Otolaryngologic manifestations. Arch Otolaryngol Head Neck Surg 116(9):1044–1046

    Article  PubMed  CAS  Google Scholar 

  • Schaaf CA et al (2009) Regulation of the Drosophila enhancer of split and invected-engrailed gene complexes by sister chromatid cohesion proteins. PLoS One 4(7):e6202

    Article  PubMed  CAS  Google Scholar 

  • Schleiffer A et al (2003) Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners. Mol Cell 11(3):571–575

    Article  PubMed  CAS  Google Scholar 

  • Schmidt D et al (2010) A CTCF-independent role for cohesin in tissue-specific transcription. Genome Res 20(5):578–588

    Article  PubMed  CAS  Google Scholar 

  • Schuldiner O et al (2008) piggyBac-based mosaic screen identifies a postmitotic function for cohesin in regulating developmental axon pruning. Dev Cell 14(2):227–238

    Article  PubMed  CAS  Google Scholar 

  • Schule B et al (2005) Inactivating mutations in ESCO2 cause SC phocomelia and Roberts syndrome: no phenotype-genotype correlation. Am J Hum Genet 77(6):1117–1128

    Article  PubMed  CAS  Google Scholar 

  • Schulz S et al (2008) Prenatal diagnosis of Roberts syndrome and detection of an ESCO2 frameshift mutation in a Pakistani family. Prenat Diagn 28(1):42–45

    Article  PubMed  CAS  Google Scholar 

  • Selicorni A et al (2005) Anomalies of the kidney and urinary tract are common in de Lange syndrome. Am J Med Genet A 132(4):395–397

    PubMed  Google Scholar 

  • Shepard JL et al (2007) A mutation in separase causes genome instability and increased susceptibility to epithelial cancer. Genes Dev 21(1):55–59

    Article  PubMed  CAS  Google Scholar 

  • Shintomi K, Hirano T (2009) Releasing cohesin from chromosome arms in early mitosis: opposing actions of Wapl-Pds5 and Sgo1. Genes Dev 23(18):2224–2236

    Article  PubMed  CAS  Google Scholar 

  • Shintomi K, Hirano T (2010) Sister chromatid resolution: a cohesin releasing network and beyond. Chromosoma 119(5):459–467

    Article  PubMed  Google Scholar 

  • Sjogren C, Nasmyth K (2001) Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr Biol 11(12):991–995

    Article  PubMed  CAS  Google Scholar 

  • Skibbens RV (2005) Unzipped and loaded: the role of DNA helicases and RFC clamp-loading complexes in sister chromatid cohesion. J Cell Biol 169(6):841–846

    Article  PubMed  CAS  Google Scholar 

  • Skibbens RV, Maradeo M, Eastman L (2007) Fork it over: the cohesion establishment factor Ctf7p and DNA replication. J Cell Sci 120(Pt 15):2471–2477

    Article  PubMed  CAS  Google Scholar 

  • Splinter E et al (2006) CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev 20(17):2349–2354

    Article  PubMed  CAS  Google Scholar 

  • Strom L et al (2004) Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell 16(6):1003–1015

    Article  PubMed  Google Scholar 

  • Sutani T et al (2009) Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesion-establishing reaction. Curr Biol 19(6):492–497

    Article  PubMed  CAS  Google Scholar 

  • Szabo P et al (2000) Maternal-specific footprints at putative CTCF sites in the H19 imprinting control region give evidence for insulator function. Curr Biol 10(10):607–610

    Article  PubMed  CAS  Google Scholar 

  • Tonkin ET et al (2004) NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet 36(6):636–641

    Article  PubMed  CAS  Google Scholar 

  • Toth A et al (1999) Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev 13(3):320–333

    Article  PubMed  CAS  Google Scholar 

  • Tsukahara M et al (1998) Brachmann-de Lange syndrome and congenital heart disease. Am J Med Genet 75(4):441–442

    Article  PubMed  CAS  Google Scholar 

  • Uhlmann F (2001) Secured cutting: controlling separase at the metaphase to anaphase transition. EMBO Rep 2(6):487–492

    PubMed  CAS  Google Scholar 

  • Uhlmann F, Lottspeich F, Nasmyth K (1999) Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400(6739):37–42

    Article  PubMed  CAS  Google Scholar 

  • Uhlmann F et al (2000) Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103(3):375–386

    Article  PubMed  CAS  Google Scholar 

  • Unal E et al (2004) DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16(6):991–1002

    Article  PubMed  Google Scholar 

  • Unal E et al (2008) A molecular determinant for the establishment of sister chromatid cohesion. Science 321(5888):566–569

    Article  PubMed  CAS  Google Scholar 

  • van der Lelij P et al (2010) Warsaw breakage syndrome, a cohesinopathy associated with mutations in the XPD helicase family member DDX11/ChlR1. Am J Hum Genet 86(2):262–266

    Article  PubMed  CAS  Google Scholar 

  • Vega H et al (2005) Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet 37(5):468–470

    Article  PubMed  CAS  Google Scholar 

  • Vega H et al (2010) Phenotypic variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical criteria for Roberts syndrome. J Med Genet 47(1):30–37

    Article  PubMed  CAS  Google Scholar 

  • Vrolik (1849) Tabulae ad illustrandam embryogenesin hominiset mammalium tam naturalem quam abnormem

    Google Scholar 

  • Waizenegger IC et al (2000) Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103(3):399–410

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Nurse P (1999) Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400(6743):461–464

    Article  PubMed  CAS  Google Scholar 

  • Wendt KS et al (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451(7180):796–801

    Article  PubMed  CAS  Google Scholar 

  • Wygnanski-Jaffe T et al (2005) Ophthalmologic findings in the Cornelia de Lange Syndrome. J AAPOS 9(5):407–415

    Article  PubMed  Google Scholar 

  • Xu H et al (2005) Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev Cell 8(6):949–961

    Article  PubMed  CAS  Google Scholar 

  • Xu H et al (2010) Rad21-cohesin haploinsufficiency impedes DNA repair and enhances gastrointestinal radiosensitivity in mice. PLoS One 5(8):e12112

    Article  PubMed  CAS  Google Scholar 

  • Yazdi PT et al (2002) SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev 16(5):571–582

    Article  PubMed  CAS  Google Scholar 

  • Yoon YS et al (2007) Analysis of the H19ICR insulator. Mol Cell Biol 27(9):3499–3510

    Article  PubMed  CAS  Google Scholar 

  • Zhang X et al (1999a) Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. J Clin Endocrinol Metab 84(2):761–767

    Article  PubMed  CAS  Google Scholar 

  • Zhang X et al (1999b) Structure, expression, and function of human pituitary tumor-transforming gene (PTTG). Mol Endocrinol 13(1):156–166

    Article  PubMed  CAS  Google Scholar 

  • Zhang B et al (2007) Mice lacking sister chromatid cohesion protein PDS5B exhibit developmental abnormalities reminiscent of Cornelia de Lange syndrome. Development 134(17):3191–3201

    Article  PubMed  CAS  Google Scholar 

  • Zhang N et al (2008a) A handcuff model for the cohesin complex. J Cell Biol 183(6):1019–1031

    Article  PubMed  CAS  Google Scholar 

  • Zhang J et al (2008b) Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol Cell 31(1):143–151

    Article  PubMed  CAS  Google Scholar 

  • Zhang N et al (2008c) Overexpression of Separase induces aneuploidy and mammary tumorigenesis. Proc Natl Acad Sci USA 105(35):13033–13038

    Article  PubMed  CAS  Google Scholar 

  • Zhang B et al (2009) Dosage effects of cohesin regulatory factor PDS5 on mammalian development: implications for cohesinopathies. PLoS One 4(5):e5232

    Article  PubMed  CAS  Google Scholar 

  • Zou H et al (1999) Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285(5426):418–422

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian D. Krantz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Xu, D., Krantz, I.D. (2012). Cohesin and Human Diseases. In: Ahituv, N. (eds) Gene Regulatory Sequences and Human Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1683-8_11

Download citation

Publish with us

Policies and ethics