Skip to main content

Gene Regulatory Elements

  • Chapter
  • First Online:
Gene Regulatory Sequences and Human Disease
  • 1147 Accesses

Abstract

While the annotation and functional characterization of the 2% of our genome that encodes for protein has been extremely successful, the remaining 98% still remains primarily uncharted territory. Within this territory reside gene regulatory sequences that instruct genes when, where, and at what levels to turn on or off. There is abundant evidence, as described in this book, that nucleotide and epigenetic changes in these gene regulatory sequences can lead to human disease. In this chapter, we will define the different types of gene regulatory elements (promoters, enhancers, silencers, and insulators) and how to identify and functionally characterize them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BRE:

TFIIB recognition element

Inr:

Initiator element

DPE:

Downstream core promoter element

TBP:

TATA-binding protein

TFIID:

Transcription factor IID

TFIIB:

Transcription factor IIB

TSS:

Transcription start site

TFBS:

Transcription factor binding sites

SHH :

Sonic hedgehog

NIPBL:

Nipped-B homolog

CTCF:

CCCTC-binding factor

LCR:

Locus control region

DHSs:

DNase I hypersensitive sites

ChIP:

Chromatin immunoprecipitation

3C:

Chromatin conformation capture

YAC:

Yeast artificial chromosome

BAC:

Bacterial artificial chromosome

References

  • Ahituv N, Zhu Y et al (2007) Deletion of ultraconserved elements yields viable mice. PLoS Biol 5(9):e234

    Article  PubMed  Google Scholar 

  • Ameres SL, Drueppel L et al (2005) Inducible DNA-loop formation blocks transcriptional activation by an SV40 enhancer. EMBO J 24(2):358–367

    Article  PubMed  CAS  Google Scholar 

  • Barski A, Cuddapah S et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837

    Article  PubMed  CAS  Google Scholar 

  • Bernstein BE, Kamal M et al (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120(2):169–181

    Article  PubMed  CAS  Google Scholar 

  • Bi X, Yu Q et al (2004) Formation of boundaries of transcriptionally silent chromatin by nucleosome-excluding structures. Mol Cell Biol 24(5):2118–2131

    Article  PubMed  CAS  Google Scholar 

  • Birney E, Stamatoyannopoulos JA et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146):799–816

    Article  PubMed  CAS  Google Scholar 

  • Blanton J, Gaszner M et al (2003) Protein:protein interactions and the pairing of boundary elements in vivo. Genes Dev 17(5):664–675

    Article  PubMed  CAS  Google Scholar 

  • Boffelli D, Nobrega MA et al (2004) Comparative genomics at the vertebrate extremes. Nat Rev Genet 5(6):456–465

    Article  PubMed  CAS  Google Scholar 

  • Bulger M, Groudine M (2011) Functional and mechanistic diversity of distal transcription enhancers. Cell 144(3):327–339

    Article  PubMed  CAS  Google Scholar 

  • Burke TW, Kadonaga JT (1997) The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAFII60 of Drosophila. Genes Dev 11(22):3020–3031

    Article  PubMed  CAS  Google Scholar 

  • Bushey AM, Dorman ER et al (2008) Chromatin insulators: regulatory mechanisms and epigenetic inheritance. Mol Cell 32(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Butler JE, Kadonaga JT (2002) The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev 16(20):2583–2592

    Article  PubMed  CAS  Google Scholar 

  • Byrd K, Corces VG (2003) Visualization of chromatin domains created by the gypsy insulator of Drosophila. J Cell Biol 162(4):565–574

    Article  PubMed  CAS  Google Scholar 

  • Calhoun VC, Stathopoulos A et al (2002) Promoter-proximal tethering elements regulate enhancer-promoter specificity in the Drosophila Antennapedia complex. Proc Natl Acad Sci USA 99(14):9243–9247

    Article  PubMed  CAS  Google Scholar 

  • Carroll SB (2005) Evolution at two levels: on genes and form. PLoS Biol 3(7):e245

    Article  PubMed  Google Scholar 

  • Clamp M, Fry B et al (2007) Distinguishing protein-coding and noncoding genes in the human genome. Proc Natl Acad Sci USA 104(49):19428–19433

    Article  PubMed  CAS  Google Scholar 

  • Crawford GE, Davis S et al (2006) DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays. Nat Methods 3(7):503–509

    Article  PubMed  CAS  Google Scholar 

  • Cretekos CJ, Wang Y et al (2008) Regulatory divergence modifies limb length between mammals. Genes Dev 22(2):141–151

    Article  PubMed  CAS  Google Scholar 

  • Creyghton MP, Cheng AW et al (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA 107(50):21931–21936

    Article  PubMed  CAS  Google Scholar 

  • Dermitzakis ET, Reymond A et al (2005) Conserved non-genic sequences – an unexpected feature of mammalian genomes. Nat Rev Genet 6(2):151–157

    Article  PubMed  CAS  Google Scholar 

  • Dorsett D (2011) Cohesin: genomic insights into controlling gene transcription and development. Curr Opin Genet Dev 21(2):199–206

    Article  PubMed  CAS  Google Scholar 

  • Ernst J, Kheradpour P et al (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473(7345):43–49

    Article  PubMed  CAS  Google Scholar 

  • Filippova GN (2008) Genetics and epigenetics of the multifunctional protein CTCF. Curr Top Dev Biol 80:337–360

    Article  PubMed  CAS  Google Scholar 

  • Fisher S, Grice EA et al (2006) Evaluating the biological relevance of putative enhancers using Tol2 transposon-mediated transgenesis in zebrafish. Nat Protoc 1(3):1297–1305

    Article  PubMed  CAS  Google Scholar 

  • Fullwood MJ, Liu MH et al (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462(7269):58–64

    Article  PubMed  CAS  Google Scholar 

  • Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196(2):261–282

    Article  PubMed  CAS  Google Scholar 

  • Gaszner M, Felsenfeld G (2006) Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 7(9):703–713

    Article  PubMed  CAS  Google Scholar 

  • Geyer PK (1997) The role of insulator elements in defining domains of gene expression. Curr Opin Genet Dev 7(2):242–248

    Article  PubMed  CAS  Google Scholar 

  • Guelen L, Pagie L et al (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453(7197):948–951

    Article  PubMed  CAS  Google Scholar 

  • Guenther MG, Levine SS et al (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130(1):77–88

    Article  PubMed  CAS  Google Scholar 

  • Harris MB, Mostecki J et al (2005) Repression of an interleukin-4-responsive promoter requires cooperative BCL-6 function. J Biol Chem 280(13):13114–13121

    Article  PubMed  CAS  Google Scholar 

  • Heintzman ND, Stuart RK et al (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39(3):311–318

    Article  PubMed  CAS  Google Scholar 

  • Heintzman ND, Hon GC et al (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459(7243):108–112

    Article  PubMed  CAS  Google Scholar 

  • Hobert O (2010) Gene regulation: enhancers stepping out of the shadow. Curr Biol 20(17):R697–R699

    Article  PubMed  CAS  Google Scholar 

  • Hong JW, Hendrix DA et al (2008) Shadow enhancers as a source of evolutionary novelty. Science 321(5894):1314

    Article  PubMed  CAS  Google Scholar 

  • Johnson DS, Mortazavi A et al (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316(5830):1497–1502

    Article  PubMed  CAS  Google Scholar 

  • Kagey MH, Newman JJ et al (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467(7314):430–435

    Article  PubMed  CAS  Google Scholar 

  • Khokha MK, Loots GG (2005) Strategies for characterising cis-regulatory elements in Xenopus. Brief Funct Genomic Proteom 4(1):58–68

    Article  CAS  Google Scholar 

  • Kim TH, Abdullaev ZK et al (2007) Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128(6):1231–1245

    Article  PubMed  CAS  Google Scholar 

  • Kim TK, Hemberg M et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465(7295):182–187

    Article  PubMed  CAS  Google Scholar 

  • Kong S, Bohl D et al (1997) Transcription of the HS2 enhancer toward a cis-linked gene is independent of the orientation, position, and distance of the enhancer relative to the gene. Mol Cell Biol 17(7):3955–3965

    PubMed  CAS  Google Scholar 

  • Korzh V (2007) Transposons as tools for enhancer trap screens in vertebrates. Genome Biol 8(Suppl 1):S8

    Article  PubMed  Google Scholar 

  • Kutach AK, Kadonaga JT (2000) The downstream promoter element DPE appears to be as widely used as the TATA box in Drosophila core promoters. Mol Cell Biol 20(13):4754–4764

    Article  PubMed  CAS  Google Scholar 

  • Lagrange T, Kapanidis AN et al (1998) New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes Dev 12(1):34–44

    Article  PubMed  CAS  Google Scholar 

  • Lanzuolo C, Roure V et al (2007) Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex. Nat Cell Biol 9(10):1167–1174

    Article  PubMed  CAS  Google Scholar 

  • Lettice LA, Heaney SJ et al (2003) A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet 12(14):1725–1735

    Article  PubMed  CAS  Google Scholar 

  • Li L, He S et al (2004) Gene regulation by Sp1 and Sp3. Biochem Cell Biol 82(4):460–471

    Article  PubMed  CAS  Google Scholar 

  • Lieberman-Aiden E, van Berkum NL et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293

    Article  PubMed  CAS  Google Scholar 

  • Ling J, Ainol L et al (2004) HS2 enhancer function is blocked by a transcriptional terminator inserted between the enhancer and the promoter. J Biol Chem 279(49):51704–51713

    Article  PubMed  CAS  Google Scholar 

  • Lomvardas S, Barnea G et al (2006) Interchromosomal interactions and olfactory receptor choice. Cell 126(2):403–413

    Article  PubMed  CAS  Google Scholar 

  • Malik S, Roeder RG (2010) The metazoan mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 11(11):761–772

    Article  PubMed  CAS  Google Scholar 

  • McLean CY, Reno PL et al (2011) Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature 471(7337):216–219

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen TS, Ku M et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560

    Article  PubMed  CAS  Google Scholar 

  • Mortlock DP, Guenther C et al (2003) A general approach for identifying distant regulatory elements applied to the Gdf6 gene. Genome Res 13(9):2069–2081

    Article  PubMed  CAS  Google Scholar 

  • Nagy A, Gertsenstein M et al (2002) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  • Neznanov N, Umezawa A et al (1997) A regulatory element within a coding exon modulates keratin 18 gene expression in transgenic mice. J Biol Chem 272(44):27549–27557

    Article  PubMed  CAS  Google Scholar 

  • Oki M, Valenzuela L et al (2004) Barrier proteins remodel and modify chromatin to restrict silenced domains. Mol Cell Biol 24(5):1956–1967

    Article  PubMed  CAS  Google Scholar 

  • Ong CT, Corces VG (2011) Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat Rev Genet 12(4):283–293

    Article  PubMed  CAS  Google Scholar 

  • Parelho V, Hadjur S et al (2008) Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132(3):422–433

    Article  PubMed  CAS  Google Scholar 

  • Parinov S, Kondrichin I et al (2004) Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev Dyn 231(2):449–459

    Article  PubMed  CAS  Google Scholar 

  • Pennacchio LA, Ahituv N et al (2006) In vivo enhancer analysis of human conserved non-coding sequences. Nature 444(7118):499–502

    Article  PubMed  CAS  Google Scholar 

  • Petrykowska HM, Vockley CM et al (2008) Detection and characterization of silencers and enhancer-blockers in the greater CFTR locus. Genome Res 18(8):1238–1246

    Article  PubMed  CAS  Google Scholar 

  • Prabhakar S, Visel A et al (2008) Human-specific gain of function in a developmental enhancer. Science 321(5894):1346–1350

    Article  PubMed  CAS  Google Scholar 

  • Privalsky ML (2004) The role of corepressors in transcriptional regulation by nuclear hormone receptors. Annu Rev Physiol 66:315–360

    Article  PubMed  CAS  Google Scholar 

  • Rada-Iglesias A, Bajpai R et al (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470(7333):279–283

    Article  PubMed  CAS  Google Scholar 

  • Recillas-Targa F, Pikaart MJ et al (2002) Position-effect protection and enhancer blocking by the chicken beta-globin insulator are separable activities. Proc Natl Acad Sci USA 99(10):6883–6888

    Article  PubMed  CAS  Google Scholar 

  • Riethoven JJ (2010) Regulatory regions in DNA: promoters, enhancers, silencers, and insulators. Methods 674:33–42

    CAS  Google Scholar 

  • Sankaran VG, Xu J et al (2010) Advances in the understanding of haemoglobin switching. Br J Haematol 149(2):181–194

    Article  PubMed  CAS  Google Scholar 

  • Smale ST, Kadonaga JT (2003) The RNA polymerase II core promoter. Annu Rev Biochem 72:449–479

    Article  PubMed  CAS  Google Scholar 

  • Song L, Crawford GE (2010) DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold 2010(2):pdb.prot5384

    Google Scholar 

  • Srinivasan L, Atchison ML (2004) YY1 DNA binding and PcG recruitment requires CtBP. Genes Dev 18(21):2596–2601

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Tsunoda T et al (2001) Identification and characterization of the potential promoter regions of 1031 kinds of human genes. Genome Res 11(5):677–684

    Article  PubMed  CAS  Google Scholar 

  • Thomas JW, Touchman JW et al (2003) Comparative analyses of multi-species sequences from targeted genomic regions. Nature 424(6950):788–793

    Article  PubMed  CAS  Google Scholar 

  • Tiwari VK, McGarvey KM et al (2008) PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol 6(12):2911–2927

    Article  PubMed  CAS  Google Scholar 

  • Tumpel S, Cambronero F et al (2008) A regulatory module embedded in the coding region of Hoxa2 controls expression in rhombomere 2. Proc Natl Acad Sci USA 105(51):20077–20082, Epub 2008 Dec 22

    Article  PubMed  CAS  Google Scholar 

  • Uchikawa M (2008) Enhancer analysis by chicken embryo electroporation with aid of genome comparison. Dev Growth Differ 50(6):467–474

    Article  PubMed  CAS  Google Scholar 

  • van Berkum NL, Dekker J (2009) Determining spatial chromatin organization of large genomic regions using 5C technology. Methods Mol Biol 567:189–213

    Article  PubMed  Google Scholar 

  • Vassetzky Y, Gavrilov A et al (2009) Chromosome conformation capture (from 3C to 5C) and its ChIP-based modification. Methods Mol Biol 567:171–188

    Article  PubMed  Google Scholar 

  • Visel A, Prabhakar S et al (2008) Ultraconservation identifies a small subset of extremely constrained developmental enhancers. Nat Genet 6:6

    Google Scholar 

  • Visel A, Akiyama JA et al (2009a) Functional autonomy of distant-acting human enhancers. Genomics 93(6):509–513

    Article  PubMed  CAS  Google Scholar 

  • Visel A, Blow MJ et al (2009b) ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457(7231):854–858

    Article  PubMed  CAS  Google Scholar 

  • Weintraub H, Groudine M (1976) Chromosomal subunits in active genes have an altered conformation. Science 193(4256):848–856

    Article  PubMed  CAS  Google Scholar 

  • Wendt KS, Yoshida K et al (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451(7180):796–801

    Article  PubMed  CAS  Google Scholar 

  • Wood AJ, Severson AF et al (2010) Condensin and cohesin complexity: the expanding repertoire of functions. Nat Rev Genet 11(6):391–404

    Article  PubMed  CAS  Google Scholar 

  • Woolfe A, Goodson M et al (2005) Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol 3(1):e7

    Article  PubMed  Google Scholar 

  • Yusufzai TM, Tagami H et al (2004) CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol Cell 13(2):291–298

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Dean A (2004) An insulator blocks spreading of histone acetylation and interferes with RNA polymerase II transfer between an enhancer and gene. Nucleic Acids Res 32(16): 4903–4919, Print 2004

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadav Ahituv .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ahituv, N. (2012). Gene Regulatory Elements. In: Ahituv, N. (eds) Gene Regulatory Sequences and Human Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1683-8_1

Download citation

Publish with us

Policies and ethics