Skip to main content

Non-contrast Biochemical Imaging

  • Chapter
  • First Online:
Hip Magnetic Resonance Imaging

Abstract

Much of the difficulty in studying OA and the efficacy of interventions is due to the current limitations in the use of plain radiographs, which are currently deemed the gold standard for noninvasive assessment of clinical OA. Often, changes such as joint space narrowing or formation of osteophytes, which can be detected on radiographs, manifest at late stage [1], when disease modifying therapies including surgery and/or drug treatment may already be ineffective. Sensitive techniques that could detect early OA and reliably monitor its progression would help to identify patients who may benefit from joint preserving interventions, to reduce the number of patients requiring arthroplasty or at least delaying the need of total hip arthroplasty (THA). In addition, the identification of patients who are likely to progress rapidly would be particularly useful when designing clinical trials. Therefore, an early diagnosis of cartilage degeneration and a sensitive, noninvasive diagnostic tool are highly desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Locher S, Werlen S, Leunig M, Ganz R. [Inadequate detectability of early stages of coxarthrosis with conventional roentgen images]. Z Orthop Ihre Grenzgeb. 2001;139(1):70–4.

    Article  PubMed  CAS  Google Scholar 

  2. Burstein D, Gray ML. Is MRI fulfilling its promise for molecular imaging of cartilage in arthritis? Osteoarthritis Cartilage. 2006;14(11):1087–90.

    Article  PubMed  CAS  Google Scholar 

  3. Nieminen MT, Rieppo J, Toyras J, Hakumaki JM, Silvennoinen J, Hyttinen MM, Helminen HJ, Jurvelin JS. T2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study. Magn Reson Med. 2001;46(3):487–93.

    Article  PubMed  CAS  Google Scholar 

  4. White LM, Sussman MS, Hurtig M, Probyn L, Tomlinson G, Kandel R. Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects. Radiology. 2006;241(2):407–14.

    Article  PubMed  Google Scholar 

  5. Domayer SE, Kutscha-Lissberg F, Welsch G, Dorotka R, Nehrer S, Gabler C, Mamisch TC, Trattnig S. T2 mapping in the knee after microfracture at 3.0 T: correlation of global T2 values and clinical outcome—preliminary results. Osteoarthritis Cartilage. 2008;16(8):903–8.

    Article  PubMed  CAS  Google Scholar 

  6. Grunder W, Wagner M, Werner A. MR-microscopic visualization of anisotropic internal cartilage structures using the magic angle technique. Magn Reson Med. 1998;39(3):376–82.

    Article  PubMed  CAS  Google Scholar 

  7. Mosher TJ, Smith H, Dardzinski BJ, Schmithorst VJ, Smith MB. MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. AJR Am J Roentgenol. 2001;177(3):665–9.

    Article  PubMed  CAS  Google Scholar 

  8. Li X, Benjamin Ma C, Link TM, Castillo DD, Blumenkrantz G, Lozano J, Carballido-Gamio J, Ries M, Majumdar S. In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis Cartilage. 2007;15(7):789–97.

    Article  PubMed  CAS  Google Scholar 

  9. Trattnig S, Mamisch TC, Welsch GH, Glaser C, Szomolanyi P, Gebetsroither S, Stastny O, Horger W, Millington S, Marlovits S. Quantitative T2 mapping of matrix-associated autologous chondrocyte transplantation at 3 Tesla: an in vivo cross-sectional study. Invest Radiol. 2007;42(6):442–8.

    Article  PubMed  Google Scholar 

  10. Kurkijarvi JE, Mattila L, Ojala RO, Vasara AI, Jurvelin JS, Kiviranta I, Nieminen MT. Evaluation of cartilage repair in the distal femur after autologous chondrocyte transplantation using T2 relaxation time and dGEMRIC. Osteoarthritis Cartilage. 2007;15(4):372–8.

    Article  PubMed  CAS  Google Scholar 

  11. Welsch GH, Mamisch TC, Domayer SE, Dorotka R, Kutscha-Lissberg F, Marlovits S, White LM, Trattnig S. Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures–initial experience. Radiology. 2008;247(1):154–61.

    Article  PubMed  Google Scholar 

  12. Quirbach S, Trattnig S, Marlovits S, Zimmermann V, Domayer S, Dorotka R, Mamisch TC, Bohndorf K, Welsch GH. Initial results of in vivo high-resolution morphological and biochemical cartilage imaging of patients after matrix-associated autologous chondrocyte transplantation (MACT) of the ankle. Skeletal Radiol. 2009;38(8):751–60.

    Article  PubMed  Google Scholar 

  13. Domayer SE, Welsch GH, Stelzeneder D, Hirschfeld C, Quirbach S, Nehrer S, Dorotka R, Mamisch TC, Trattnig S. Microfracture in the ankle: clinical results and MRI with T2-mapping at 3.0 T after 1 to 8 years. Cartilage. 2011;2(1):73–80.

    Article  Google Scholar 

  14. Nehrer S, Domayer SE, Hirschfeld C, Stelzeneder D, Trattnig S, Dorotka R. Matrix-associated and autologous chondrocyte transplantation in the ankle: clinical and MRI follow-up after 2 to 11 years. Cartilage. 2011;2(1):81–91.

    Article  Google Scholar 

  15. Maier CF, Tan SG, Hariharan H, Potter HG. T2 quantitation of articular cartilage at 1.5 T. J Magn Reson Imaging. 2003;17(3):358–64.

    Article  PubMed  Google Scholar 

  16. Pai A, Li X, Majumdar S. A comparative study at 3 T of sequence dependence of T2 quantitation in the knee. Magn Reson Imaging. 2008;26(9):1215–20.

    Article  PubMed  Google Scholar 

  17. Glaser C, Mendlik T, Dinges J, Weber J, Stahl R, Trumm C, Reiser M. Global and regional reproducibility of T2 relaxation time measurements in human patellar cartilage. Magn Reson Med. 2006;56(3):527–34.

    Article  PubMed  CAS  Google Scholar 

  18. Glaser C, Horng A, Mendlik T, Weckbach S, Hoffmann RT, Wagner S, Raya JG, Horger W, Reiser M. [T2 relaxation time in patellar cartilage–global and regional reproducibility at 1.5 tesla and 3 tesla]. Rofo. 2007;179(2):146–52.

    Article  PubMed  CAS  Google Scholar 

  19. Mamisch TC, Hughes T, Mosher TJ, Mueller C, Trattnig S, Boesch C, Welsch GH. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study. Skeletal Radiol. 2012;41(3):287–92.

    Article  PubMed  Google Scholar 

  20. Bittersohl B, Miese FR, Hosalkar HS, Mamisch TC, Antoch G, Krauspe R, Zilkens C. T2* mapping of acetabular and femoral hip joint cartilage at 3 T: a prospective controlled study. Invest Radiol. 2012;47(7):392–7.

    Article  PubMed  CAS  Google Scholar 

  21. Apprich S, Welsch GH, Mamisch TC, Szomolanyi P, Mayerhoefer M, Pinker K, Trattnig S. Detection of degenerative cartilage disease: comparison of high-resolution morphological MR and quantitative T2 mapping at 3.0 Tesla. Osteoarthritis Cartilage. 2010;18(9):1211–7.

    Article  PubMed  CAS  Google Scholar 

  22. Welsch GH, Apprich S, Zbyn S, Mamisch TC, Mlynarik V, Scheffler K, Bieri O, Trattnig S. Biochemical (T2, T2* and magnetisation transfer ratio) MRI of knee cartilage: feasibility at ultra-high field (7T) compared with high field (3T) strength. Eur Radiol. 2011;21(6):1136–43.

    Article  PubMed  Google Scholar 

  23. Apprich S, Mamisch TC, Welsch GH, Bonel H, Siebenrock KA, Kim YJ, Trattnig S, Dudda M. Evaluation of articular cartilage in patients with femoroacetabular impingement (FAI) using T2* mapping at different time points at 3.0 Tesla MRI: a feasibility study. Skeletal Radiol. 2012;41(8):987–95.

    Article  PubMed  CAS  Google Scholar 

  24. Guivel-Scharen V, Sinnwell T, Wolff SD, Balaban RS. Detection of proton chemical exchange between metabolites and water in biological tissues. J Magn Reson. 1998;133(1):36–45.

    Article  PubMed  CAS  Google Scholar 

  25. Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson. 2000;143(1):79–87.

    Article  PubMed  CAS  Google Scholar 

  26. Ward KM, Balaban RS. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med. 2000;44(5):799–802.

    Article  PubMed  CAS  Google Scholar 

  27. Zhou JY, van Zijl PCM. Chemical exchange saturation transfer imaging and spectroscopy. Prog Nucl Magn Reson Spectrosc. 2006;48(2–3):109–36.

    Article  CAS  Google Scholar 

  28. Ling W, Regatte RR, Navon G, Jerschow A. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A. 2008;105(7):2266–70.

    Article  PubMed  CAS  Google Scholar 

  29. Ayad S. The extracellular matrix factsbook. San Diego, CA: Academic; 1998. p. 301.

    Google Scholar 

  30. Roughley PJ. The structure and function of cartilage proteoglycans. Eur Cell Mater. 2006;12:92–101.

    PubMed  CAS  Google Scholar 

  31. Roughley PJ, Lee ER. Cartilage proteoglycans—structure and potential functions. Microsc Res Tech. 1994;28(5):385–97.

    Article  PubMed  CAS  Google Scholar 

  32. Reddy R, Li SC, Noyszewski EA, Kneeland JB, Leigh JS. In vivo sodium multiple quantum spectroscopy of human articular cartilage. Magn Reson Med. 1997;38(2):207–14.

    Article  PubMed  CAS  Google Scholar 

  33. Borthakur A, Shapiro EM, Beers J, Kudchodkar S, Kneeland JB, Reddy R. Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. Osteoarthritis Cartilage. 2000;8(4):288–93.

    Article  PubMed  CAS  Google Scholar 

  34. Shapiro EM, Borthakur A, Dandora R, Kriss A, Leigh JS, Reddy R. Sodium visibility and quantitation in intact bovine articular cartilage using high field Na-23 MRI and MRS. J Magn Reson. 2000;142(1):24–31.

    Article  PubMed  CAS  Google Scholar 

  35. Shapiro EM, Borthakur A, Gougoutas A, Reddy R. Na-23 MRI accurately measures fixed charge density in articular cartilage. Magn Reson Med. 2002;47(2):284–91.

    Article  PubMed  Google Scholar 

  36. Krusche-Mandl I, Schmitt B, Zak L, Apprich S, Aldrian S, Juras V, Friedrich KM, Marlovits S, Weber M, Trattnig S. Long-term results 8 years after autologous osteochondral transplantation: 7 T gagCEST and sodium magnetic resonance imaging with morphological and clinical correlation. Osteoarthritis Cartilage. 2012;20(5):357–63.

    Article  PubMed  CAS  Google Scholar 

  37. Schmitt B, Zbyn S, Stelzeneder D, Jellus V, Paul D, Lauer L, Bachert P, Trattnig S. Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and 23Na MR imaging at 7 T. Radiology. 2011;260(1):257–64.

    Article  PubMed  Google Scholar 

  38. Eckstein F, Burstein D, Link TM. Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis. NMR Biomed. 2006;19(7):822–54.

    Article  PubMed  Google Scholar 

  39. Trattnig S, Domayer S, Welsch GW, Mosher T, Eckstein F. MR imaging of cartilage and its repair in the knee—a review. Eur Radiol. 2009;19(7):1582–94.

    Article  PubMed  CAS  Google Scholar 

  40. Welsch GH, Trattnig S, Hughes T, Quirbach S, Olk A, Blanke M, Marlovits S, Mamisch TC. T2 and T2*mapping in patients after matrix-associated autologous chondrocyte transplantation: initial results on clinical use with 3.0-Tesla MRI. Eur Radiol. 2010;20(6):1515–23.

    Article  PubMed  Google Scholar 

  41. Trattnig S, Ba-Ssalamah A, Pinker K, Plank C, Vecsei V, Marlovits S. Matrix-based autologous chondrocyte implantation for cartilage repair: noninvasive monitoring by high-resolution magnetic resonance imaging. Magn Reson Imaging. 2005;23(7):779–87.

    Article  PubMed  CAS  Google Scholar 

  42. Trattnig S, Marlovits S, Gebetsroither S, Szomolanyi P, Welsch GH, Salomonowitz E, Watanabe A, Deimling M, Mamisch TC. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0T: preliminary results. J Magn Reson Imaging. 2007;26(4):974–82.

    Article  PubMed  Google Scholar 

  43. Trattnig S, Welsch GH, Juras V, Szomolanyi P, Mayerhoefer ME, Stelzeneder D, Mamisch TC, Bieri O, Scheffler K, Zbyn S. 23Na MR imaging at 7 T after knee matrix-associated autologous chondrocyte transplantation: preliminary results. Radiology. 2010;257(1):175–84.

    Article  PubMed  Google Scholar 

  44. Varma G, Kourtelidis F, Madhurantakam A, Hackney DB, Lenkinski RE, Vinogradov E. Age-related assessment of intervertebral disc degeneration in the lumbar spine using gagCEST. Melbourne: ISMRM; 2012. p. 1460.

    Google Scholar 

  45. Kim M, Chan Q, Anthony MP, Samartzis D, Cheung KM, Khong PL. Chemical exchange saturation transfer and T2 mapping in subjects with intervertebral disc degeneration at 3 Tesla. Melbourne: ISMRM; 2012. p. 3331.

    Google Scholar 

  46. Singh A, Haris M, Cai K, Kassey VB, Kogan F, Reddy D, Hariharan H, Reddy R. Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T. Magn Reson Med. 2012;68(2):588–94.

    Article  PubMed  Google Scholar 

  47. Einstein A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys. 1905;322(8):549–60.

    Article  Google Scholar 

  48. von Smoluchowski M. Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann Phys. 1906;326(14):756–80.

    Article  Google Scholar 

  49. Tanner JE, Stejskal EO. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42:288–92.

    Article  Google Scholar 

  50. Le Bihan D, Breton E. Imagerie de diffusion in vivo par résonance magnétique nucléaire. C R Acad Sci Paris. 1985;301:1109–12.

    Google Scholar 

  51. Merboldt KD, Hanicke W, Frahm J. Self-diffusion NMR imaging using stimulated echoes. J Magn Reson. 1985;64:479–86.

    CAS  Google Scholar 

  52. Taylor DG, Bushell MC. The spatial mapping of translational diffusion coefficients by the NMR imaging technique. Phys Med Biol. 1985;30:345–9.

    Article  PubMed  CAS  Google Scholar 

  53. Mlynarik V, Sulzbacher I, Bittsansky M, Fuiko R, Trattnig S. Investigation of apparent diffusion constant as an indicator of early degenerative disease in articular cartilage. J Magn Reson Imaging. 2003;17(4):440–4.

    Article  PubMed  Google Scholar 

  54. Miller KL, Hargreaves BA, Gold GE, Pauly JM. Steady-state diffusion-weighted imaging of in vivo knee cartilage. Magn Reson Med. 2004;51(2):394–8.

    Article  PubMed  Google Scholar 

  55. Deoni SC, Peters TM, Rutt BK. Quantitative diffusion imaging with steady-state free precession. Magn Reson Med. 2004;51(2):428–33.

    Article  PubMed  Google Scholar 

  56. Kaiser R, Bartholdi E, Ernst RR. Diffusion and field-gradient effects in NMR Fourier spectroscopy. J Chem Phys. 1974;60:2966–79.

    Article  CAS  Google Scholar 

  57. Le Bihan D. Intravoxel incoherent motion imaging using steady-state free precession. Magn Reson Med. 1988;7(3):346–51.

    Article  PubMed  Google Scholar 

  58. Merboldt KD, Bruhn H, Frahm J, Gyngell ML, Hanicke W, Deimling M. MRI of “diffusion” in the human brain: new results using a modified CE-FAST sequence. Magn Reson Med. 1989;9(3):423–9.

    Article  PubMed  CAS  Google Scholar 

  59. Wu EX, Buxton RB. Effect of diffusion on the steady-state magnetization with pulsed field gradients. J Magn Reson. 1990;90(2):243–53.

    Google Scholar 

  60. Buxton RB. The diffusion sensitivity of fast steady-state free precession imaging. Magn Reson Med. 1993;29(2):235–43.

    Article  PubMed  CAS  Google Scholar 

  61. Patz S, Hawkes RC. The application of steady-state free precession to the study of very slow fluid flow. Magn Reson Med. 1986;3(1):140–5.

    Article  PubMed  CAS  Google Scholar 

  62. Merboldt KD, Hänicke W, Gyngell ML, Frahm J, Bruhn H. Rapid NMR imaging of molecular self-diffusion using a modified CE-FAST sequence. J Magn Reson. 1989;82(1):115–21.

    CAS  Google Scholar 

  63. Mamisch TC, Menzel MI, Welsch GH, Bittersohl B, Salomonowitz E, Szomolanyi P, Kordelle J, Marlovits S, Trattnig S. Steady-state diffusion imaging for MR in-vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3 tesla–preliminary results. Eur J Radiol. 2008;65(1):72–9.

    Article  PubMed  Google Scholar 

  64. Welsch GH, Trattnig S, Domayer S, Marlovits S, White LM, Mamisch TC. Multimodal approach in the use of clinical scoring, morphological MRI and biochemical T2-mapping and diffusion-weighted imaging in their ability to assess differences between cartilage repair tissue after microfracture therapy and matrix-associated autologous chondrocyte transplantation: a pilot study. Osteoarthritis Cartilage. 2009;17(9):1219–27.

    Article  PubMed  CAS  Google Scholar 

  65. Friedrich KM, Mamisch TC, Plank C, Langs G, Marlovits S, Salomonowitz E, Trattnig S, Welsch G. Diffusion-weighted imaging for the follow-up of patients after matrix-associated autologous chondrocyte transplantation. Eur J Radiol. 2010;73(3):622–8.

    Article  PubMed  Google Scholar 

  66. Bieri O, Ganter C, Welsch GH, Trattnig S, Mamisch TC, Scheffler K. Fast diffusion-weighted steady state free precession imaging of in vivo knee cartilage. Magn Reson Med. 2012;67(3):691–700.

    Article  PubMed  CAS  Google Scholar 

  67. Freed DE, Scheven UM, Zielinski LJ, Sen PN, Hürlimann MD. Steady-state free precession experiments and exact treatment of diffusion in a uniform gradient. J Chem Phys. 2001;119(9):4249–58.

    Article  Google Scholar 

  68. Zur Y, Bosak E, Kaplan N. A new diffusion SSFP imaging technique. Magn Reson Med. 1997;37(5):716–22.

    Article  PubMed  CAS  Google Scholar 

  69. Deimling M. Method to determine the ADC coefficients in diffusion-weighted magnetic resonance imaging given use of steady-state sequences. US patent 6,891,373 B2; 2005.

    Google Scholar 

  70. Cho MH, Cho ZH. NMR diffusion coefficient mapping by use of fast steady-state free precession sequence. In: Proceedings of Society of Magnetic Resonance in Medicine, Amsterdam, The Netherlands; 1989. p 911.

    Google Scholar 

  71. Bieri O, Ganter C, Scheffler K. Quantitative in vivo diffusion imaging of cartilage using double echo steady-state free precession. Magn Reson Med. 2012;68(3):720–9.

    Google Scholar 

  72. Staroswiecki E, Granlund KL, Alley MT, Gold GE, Hargreaves BA. Simultaneous estimation of T(2) and apparent diffusion coefficient in human articular cartilage in vivo with a modified three-dimensional double echo steady state (DESS) sequence at 3 T. Magn Reson Med. 2012;67(4):1086–96.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Trattnig MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Domayer, S., Apprich, S., Schmitt, B., Bieri, O., Trattnig, S. (2014). Non-contrast Biochemical Imaging. In: Kim, YJ., Mamisch, T. (eds) Hip Magnetic Resonance Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1668-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1668-5_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1667-8

  • Online ISBN: 978-1-4614-1668-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics