Application of dGEMRIC to the Study of Hip Disorders



The dGEMRIC technique has been applied extensively to the study of hip disorders. It has shown to correlate with symptoms and severity of dysplasia in symptomatic acetabular dysplasia. It is useful in selecting appropriate hips for pelvic osteotomy treatment for hip dysplasia. The pattern of cartilage damage in dysplasia and impingement hips is different, where impingement seems to cause more focal damage, perhaps suggesting a variable role of direct mechanical damage vs. mechanically induced catabolism of cartilage in the two conditions. dGEMRIC appears to show cartilage damage before macroscopic change suggesting this technique may show recovery of cartilage in vivo with appropriate disease modifying treatment.


Cartilage Damage Cartilage Lesion Slip Capital Femoral Epiphysis Alpha Angle Joint Space Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Pfirrmann CW, Mengiardi B, Dora C, Kalberer F, Zanetti M, Hodler J. Cam and pincer femoroacetabular impingement: characteristic MR arthrographic findings in 50 patients. Radiology. 2006;240(3):778–85. Epub 2006/07/22.PubMedCrossRefGoogle Scholar
  2. 2.
    Schmid MR, Notzli HP, Zanetti M, Wyss TF, Hodler J. Cartilage lesions in the hip: diagnostic effectiveness of MR arthrography. Radiology. 2003;226(2):382–6. Epub 2003/02/04.PubMedCrossRefGoogle Scholar
  3. 3.
    Shepherd DE, Seedhom BB. Thickness of human articular cartilage in joints of the lower limb. Ann Rheum Dis. 1999;58(1):27–34. Epub 1999/05/27.PubMedCrossRefGoogle Scholar
  4. 4.
    Locher S, Werlen S, Leunig M, Ganz R. MR-arthrography with radial sequences for visualization of early hip pathology not visible on plain radiographs. Z Orthop Ihre Grenzgeb. 2002;140(1):52–7. Epub 2002/03/19. Arthro-MRI mit radiarer Schnittsequenz zur Darstellung der praradiologischen Huftpathologie.PubMedCrossRefGoogle Scholar
  5. 5.
    Petersilge CA. MR arthrography for evaluation of the acetabular labrum. Skeletal Radiol. 2001;30(8):423–30. Epub 2001/08/02.PubMedCrossRefGoogle Scholar
  6. 6.
    Knuesel PR, Pfirrmann CW, Noetzli HP, Dora C, Zanetti M, Hodler J, et al. MR arthrography of the hip: diagnostic performance of a dedicated water-excitation 3D double-echo steady-state sequence to detect cartilage lesions. AJR Am J Roentgenol. 2004;183(6):1729–35. Epub 2004/11/18.PubMedCrossRefGoogle Scholar
  7. 7.
    Wenger DR, Bomar JD. Human hip dysplasia: evolution of current treatment concepts. J Orthop Sci. 2003;8(2):264–71. Epub 2003/04/01.PubMedCrossRefGoogle Scholar
  8. 8.
    Burstein D, Velyvis J, Scott KT, Stock KW, Kim YJ, Jaramillo D, et al. Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med. 2001;45(1):36–41. Epub 2001/01/09.PubMedCrossRefGoogle Scholar
  9. 9.
    Siversson C, Tiderius CJ, Neuman P, Dahlberg L, Svensson J. Repeatability of T1-quantification in dGEMRIC for three different acquisition techniques: two-dimensional inversion recovery, three-dimensional look locker, and three-dimensional variable flip angle. J Magn Reson Imaging. 2010;31(5):1203–9. Epub 2010/05/01.PubMedCrossRefGoogle Scholar
  10. 10.
    McKenzie CA, Williams A, Prasad PV, Burstein D. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 1.5T and 3.0T. J Magn Reson Imaging. 2006;24(4):928–33.PubMedCrossRefGoogle Scholar
  11. 11.
    Tiderius CJ, Olsson LE, de Verdier H, Leander P, Ekberg O, Dahlberg L. Gd-DTPA2)-enhanced MRI of femoral knee cartilage: a dose-response study in healthy volunteers. Magn Reson Med. 2001;46(6):1067–71. Epub 2001/12/18.PubMedCrossRefGoogle Scholar
  12. 12.
    Tiderius CJ, Jessel R, Kim YJ, Burstein D. Hip dGEMRIC in asymptomatic volunteers and patients with early osteoarthritis: the influence of timing after contrast injection. Magn Reson Med. 2007;57(4):803–5. Epub 2007/03/29.PubMedCrossRefGoogle Scholar
  13. 13.
    Kim YJ, Jaramillo D, Millis MB, Gray ML, Burstein D. Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am. 2003;85-A(10):1987–92. Epub 2003/10/18.PubMedGoogle Scholar
  14. 14.
    Cunningham T, Jessel R, Zurakowski D, Millis MB, Kim YJ. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage to predict early failure of Bernese periacetabular osteotomy for hip dysplasia. J Bone Joint Surg Am. 2006;88(7):1540–8. Epub 2006/07/05.PubMedCrossRefGoogle Scholar
  15. 15.
    Trattnig S, Mlynarik V, Breitenseher M, Huber M, Zembsch A, Rand T, et al. MRI visualization of proteoglycan depletion in articular cartilage via intravenous administration of Gd-DTPA. Magn Reson Imaging. 1999;17(4):577–83. Epub 1999/05/07.PubMedCrossRefGoogle Scholar
  16. 16.
    Bittersohl B, Hosalkar HS, Haamberg T, Kim YJ, Werlen S, Siebenrock KA, et al. Reproducibility of dGEMRIC in assessment of hip joint cartilage: a prospective study. J Magn Reson Imaging. 2009;30(1):224–8. Epub 2009/06/27.PubMedCrossRefGoogle Scholar
  17. 17.
    Multanen J, Rauvala E, Lammentausta E, Ojala R, Kiviranta I, Hakkinen A, et al. Reproducibility of imaging human knee cartilage by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 1.5 Tesla. Osteoarthritis Cartilage. 2009;17(5):559–64.PubMedCrossRefGoogle Scholar
  18. 18.
    Bashir A, Gray ML, Hartke J, Burstein D. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med. 1999;41(5):857–65. Epub 1999/05/20.PubMedCrossRefGoogle Scholar
  19. 19.
    Tiderius CJ, Olsson LE, Leander P, Ekberg O, Dahlberg L. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis. Magn Reson Med. 2003;49(3):488–92. Epub 2003/02/21.PubMedCrossRefGoogle Scholar
  20. 20.
    Li W, Scheidegger R, Wu Y, Vu A, Prasad PV. Accuracy of T1 measurement with 3-D Look-Locker technique for dGEMRIC. J Magn Reson Imaging. 2008;27(3):678–82. Epub 2008/01/10.PubMedCrossRefGoogle Scholar
  21. 21.
    Siversson C, Tiderius CJ, Dahlberg L, Svensson J. Local flip angle correction for improved volume T1-quantification in three-dimensional dGEMRIC using the Look-Locker technique. J Magn Reson Imaging. 2009;30(4):834–41. Epub 2009/09/30.PubMedCrossRefGoogle Scholar
  22. 22.
    Mamisch TC, Dudda M, Hughes T, Burstein D, Kim YJ. Comparison of delayed gadolinium enhanced MRI of cartilage (dGEMRIC) using inversion recovery and fast T1 mapping sequences. Magn Reson Med. 2008;60(4):768–73. Epub 2008/09/26.PubMedCrossRefGoogle Scholar
  23. 23.
    Trattnig S, Marlovits S, Gebetsroither S, Szomolanyi P, Welsch GH, Salomonowitz E, et al. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0T: preliminary results. J Magn Reson Imaging. 2007;26(4):974–82.PubMedCrossRefGoogle Scholar
  24. 24.
    Kimelman T, Vu A, Storey P, McKenzie C, Burstein D, Prasad P. Three-dimensional T1 mapping for dGEMRIC at 3.0 T using the Look Locker method. Invest Radiol. 2006;41(2):198–203.PubMedCrossRefGoogle Scholar
  25. 25.
    Siversson C, Chan J, Tiderius CJ, Mamisch TC, Jellus V, Svensson J, et al. Effects of B1 inhomogeneity correction for three-dimensional variable flip angle T1 measurements in hip dGEMRIC at 3 T and 1.5 T. Magn Reson Med. 2012;67(6):1776–81.PubMedCrossRefGoogle Scholar
  26. 26.
    Craig JG, Go L, Blechinger J, Hearshen D, Bouffard JA, Diamond M, et al. Three-tesla imaging of the knee: initial experience. Skeletal Radiol. 2005;34(8):453–61. Epub 2005/06/22.PubMedCrossRefGoogle Scholar
  27. 27.
    Shapiro MD, Magee T, Williams D, Ramnath R, Ross JS. The time for 3T clinical imaging is now. AJNR Am J Neuroradiol. 2004;25(9):1628–9. author reply 9. Epub 2004/10/27.PubMedGoogle Scholar
  28. 28.
    Wong S, Steinbach L, Zhao J, Stehling C, Ma CB, Link TM. Comparative study of imaging at 3.0 T versus 1.5 T of the knee. Skeletal Radiol. 2009;38(8):761–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Mosher TJ. Musculoskeletal imaging at 3T: current techniques and future applications. Magn Reson Imaging Clin N Am. 2006;14(1):63–76. Epub 2006/03/15.PubMedCrossRefGoogle Scholar
  30. 30.
    Bauer JS, Barr C, Henning TD, Malfair D, Ma CB, Steinbach L, et al. Magnetic resonance imaging of the ankle at 3.0 Tesla and 1.5 Tesla in human cadaver specimens with artificially created lesions of cartilage and ligaments. Invest Radiol. 2008;43(9):604–11.PubMedCrossRefGoogle Scholar
  31. 31.
    Masi JN, Sell CA, Phan C, Han E, Newitt D, Steinbach L, et al. Cartilage MR imaging at 3.0 versus that at 1.5 T: preliminary results in a porcine model. Radiology. 2005;236(1):140–50.PubMedCrossRefGoogle Scholar
  32. 32.
    Kijowski R, Blankenbaker DG, Davis KW, Shinki K, Kaplan LD, De Smet AA. Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology. 2009;250(3):839–48.PubMedCrossRefGoogle Scholar
  33. 33.
    Aronson J. Osteoarthritis of the young adult hip: etiology and treatment. Instr Course Lect. 1986;35:119–28. Epub 1986/01/01.PubMedGoogle Scholar
  34. 34.
    Harris WH. Etiology of osteoarthritis of the hip. Clin Orthop Relat Res. 1986;213:20–33. Epub 1986/12/01.PubMedGoogle Scholar
  35. 35.
    Solomon L. Patterns of osteoarthritis of the hip. J Bone Joint Surg Br. 1976;58(2):176–83. Epub 1976/05/01.PubMedGoogle Scholar
  36. 36.
    Hipp JA, Sugano N, Millis MB, Murphy SB. Planning acetabular redirection osteotomies based on joint contact pressures. Clin Orthop Relat Res. 1999;364:134–43. Epub 1999/07/23.PubMedCrossRefGoogle Scholar
  37. 37.
    Jacobsen S, Sonne-Holm S. Hip dysplasia: a significant risk factor for the development of hip osteoarthritis. A cross-sectional survey. Rheumatology (Oxford). 2005;44(2):211–8.CrossRefGoogle Scholar
  38. 38.
    Cooperman DR, Wallensten R, Stulberg SD. Post-reduction avascular necrosis in congenital dislocation of the hip. J Bone Joint Surg Am. 1980;62(2):247–58. Epub 1980/03/01.PubMedGoogle Scholar
  39. 39.
    Murphy SB, Ganz R, Muller ME. The prognosis in untreated dysplasia of the hip. A study of radiographic factors that predict the outcome. J Bone Joint Surg Am. 1995;77(7):985–9. Epub 1995/07/01.PubMedGoogle Scholar
  40. 40.
    Fuji M, Nakashima Y, Jingushi S, Yamamoto T, Noguchi Y, Suenaga E, et al. Intraarticular findings in symptomatic developmental dysplasia of the hip. J Pediatr Orthop. 2009;29(1):9–13. Epub 2008/12/23.CrossRefGoogle Scholar
  41. 41.
    McCarthy JC, Lee JA. Acetabular dysplasia: a paradigm of arthroscopic examination of chondral injuries. Clin Orthop Relat Res. 2002;405:122–8. Epub 2002/12/04.PubMedCrossRefGoogle Scholar
  42. 42.
    Jessel RH, Zurakowski D, Zilkens C, Burstein D, Gray ML, Kim YJ. Radiographic and patient factors associated with pre-radiographic osteoarthritis in hip dysplasia. J Bone Joint Surg Am. 2009;91(5):1120–9. Epub 2009/05/05.PubMedCrossRefGoogle Scholar
  43. 43.
    McKinley TO. The Bernese periacetabular osteotomy for treatment of adult hip dysplasia. Skeletal Radiol. 2010;39(11):1057–9. Epub 2010/07/21.PubMedCrossRefGoogle Scholar
  44. 44.
    Clohisy JC, Barrett SE, Gordon JE, Delgado ED, Schoenecker PL. Periacetabular osteotomy in the treatment of severe acetabular dysplasia. Surgical technique. J Bone Joint Surg Am. 2006;88(Suppl 1 Pt 1):65–83. Epub 2006/03/03.PubMedGoogle Scholar
  45. 45.
    Matheney T, Kim YJ, Zurakowski D, Matero C, Millis M. Intermediate to long-term results following the Bernese periacetabular osteotomy and predictors of clinical outcome. J Bone Joint Surg Am. 2009;91(9):2113–23. Epub 2009/09/03.PubMedCrossRefGoogle Scholar
  46. 46.
    Anderson LA, Peters CL, Park BB, Stoddard GJ, Erickson JA, Crim JR. Acetabular cartilage delamination in femoroacetabular impingement. Risk factors and magnetic resonance imaging diagnosis. J Bone Joint Surg Am. 2009;91(2):305–13. Epub 2009/02/03.PubMedCrossRefGoogle Scholar
  47. 47.
    Ganz R, Parvizi J, Beck M, Leunig M, Notzli H, Siebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res. 2003;417:112–20. Epub 2003/12/04.PubMedGoogle Scholar
  48. 48.
    Siebenrock KA, Schoeniger R, Ganz R. Anterior femoro-acetabular impingement due to acetabular retroversion. Treatment with periacetabular osteotomy. J Bone Joint Surg Am. 2003;85-A(2):278–86. Epub 2003/02/07.PubMedGoogle Scholar
  49. 49.
    Murphy S, Tannast M, Kim YJ, Buly R, Millis MB. Debridement of the adult hip for femoroacetabular impingement: indications and preliminary clinical results. Clin Orthop Relat Res. 2004;429:178–81. Epub 2004/12/04.PubMedCrossRefGoogle Scholar
  50. 50.
    Botser IB, Smith Jr TW, Nasser R, Domb BG. Open surgical dislocation versus arthroscopy for femoroacetabular impingement: a comparison of clinical outcomes. Arthroscopy. 2011;27(2):270–8. Epub 2011/01/27.PubMedCrossRefGoogle Scholar
  51. 51.
    Pollard TC, McNally EG, Wilson DC, Wilson DR, Madler B, Watson M, et al. Localized cartilage assessment with three-dimensional dGEMRIC in asymptomatic hips with normal morphology and cam deformity. J Bone Joint Surg Am. 2010;92(15):2557–69. Epub 2010/11/05.PubMedCrossRefGoogle Scholar
  52. 52.
    Bittersohl B, Hosalkar HS, Werlen S, Trattnig S, Siebenrock KA, Mamisch TC. DGEMRIC and subsequent T1 mapping of the hip at 1.5 Tesla: normative data on zonal and radial distribution in asymptomatic volunteers. J Magn Reson Imaging. 2011;34(1):101–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Lattanzi R, Petchprapa C, Glaser C, Dunham K, Mikheev AV, Krigel A, et al. A new method to analyze dGEMRIC measurements in femoroacetabular impingement: preliminary validation against arthroscopic findings. Osteoarthritis Cartilage. 2012;20(10):1127–33. Epub 2012/07/10.PubMedCrossRefGoogle Scholar
  54. 54.
    Mamisch TC, Kain MS, Bittersohl B, Apprich S, Werlen S, Beck M, et al. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) in Femoacetabular impingement. J Orthop Res. 2011;29(9):1305–11. Epub 2011/03/26.PubMedCrossRefGoogle Scholar
  55. 55.
    Kim YJ, Novais EN. Diagnosis and treatment of femoroacetabular impingement in Legg-Calve-Perthes disease. J Pediatr Orthop. 2011;31(2 Suppl):S235–40. Epub 2011/09/01.PubMedCrossRefGoogle Scholar
  56. 56.
    Weinstein SL. Legg-Calve-Perthes disease: results of long-term follow-up. Hip. 1985;28-37. Epub 1985/01/01.Google Scholar
  57. 57.
    Holstein A, Zilkens C, Bittersohl B, Jager M, Haamberg T, Mamisch TC, et al. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and morphologic MRI of cartilage in the long-term follow-up after Legg-Calve-Perthes disease (LCPD). J Med Imaging Radiat Oncol. 2011;55(3):259–65. Epub 2011/06/24.PubMedCrossRefGoogle Scholar
  58. 58.
    Zilkens C, Holstein A, Bittersohl B, Jager M, Haamberg T, Miese F, et al. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage in the long-term follow-up after Perthes disease. J Pediatr Orthop. 2010;30(2):147–53. Epub 2010/02/25.PubMedCrossRefGoogle Scholar
  59. 59.
    Bittersohl B, Hosalkar HS, Hughes T, Kim YJ, Werlen S, Siebenrock KA, et al. Feasibility of T2* mapping for the evaluation of hip joint cartilage at 1.5T using a three-dimensional (3D), gradient-echo (GRE) sequence: a prospective study. Magn Reson Med. 2009;62(4):896–901.PubMedCrossRefGoogle Scholar
  60. 60.
    Carney BT, Weinstein SL, Noble J. Long-term follow-up of slipped capital femoral epiphysis. J Bone Joint Surg Am. 1991;73(5):667–74. Epub 1991/06/01.PubMedGoogle Scholar
  61. 61.
    Leunig M, Casillas MM, Hamlet M, Hersche O, Notzli H, Slongo T, et al. Slipped capital femoral epiphysis: early mechanical damage to the acetabular cartilage by a prominent femoral metaphysis. Acta Orthop Scand. 2000;71(4):370–5. Epub 2000/10/12.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  1. 1.Department of Orthopedic SurgeryBoston Children’s HospitalBostonUSA
  2. 2.Department of Orthopedic SurgeryBoston Children’s HospitalBostonUSA

Personalised recommendations