Trajectory Pattern Mining

  • Hoyoung Jeung
  • Man Lung Yiu
  • Christian S. Jensen
Chapter

Abstract

In step with the rapidly growing volumes of available moving-object trajectory data, there is also an increasing need for techniques that enable the analysis of trajectories. Such functionality may benefit a range of application area and services, including transportation, the sciences, sports, and prediction-based and social services, to name but a few. The chapter first provides an overview trajectory patterns and a categorization of trajectory patterns from the literature. Next, it examines relative motion patterns, which serve as fundamental background for the chapter's subsequent discussions. Relative patterns enable the specification of patterns to be identified in the data that refer to the relationships of motion attributes among moving objects. The chapter then studies disc-based and density-based patterns, which address some of the limitations of relative motion patterns. The chapter also reviews indexing structures and algorithms for trajectory pattern mining.

Keywords

Transportation Expense Azimuth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Digital battle field. http://www.defenselink.mil/news/newsarticle.aspx?id=45084Google Scholar
  2. 2.
    Porcupine caribou herd satellite collar project. http://www.taiga.net/satellite/.Google Scholar
  3. 3.
    Al-Naymat, G., Chawla, S., Gudmundsson, J.: Dimensionality reduction for long duration and complex spatio-temporal queries. In: Proceedings of the ACM symposium on Applied computing, pp. 393–397 (2007)Google Scholar
  4. 4.
    Andersson, M., Gudmundsson, J., Laube, P., Wolle, T.: Reporting leadership patterns among trajectories. In: SAC, pp. 3–7 (2007)Google Scholar
  5. 5.
    Andersson, M., Gudmundsson, J., Laube, P.,Wolle, T.: Reporting leaders and followers among trajectories of moving point objects. GeoInformatica 12(4), 497–528 (2008)CrossRefGoogle Scholar
  6. 6.
    Arumugam, S., Jermaine, C.: Closest-point-of-approach join for moving object histories. In: Proceedings of the IEEE International Conference on Data Engineering, p. 86 (2006)Google Scholar
  7. 7.
    Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching. In: SODA, pp. 573–582 (1994)Google Scholar
  8. 8.
    Aung, H.H., Tan, K.L.: Discovery of evolving convoys. In: Proceedings of the 22nd international conference on Scientific and statistical database management, pp. 196–213 (2010)Google Scholar
  9. 9.
    Bakalov, P., Hadjieleftheriou, M., Keogh, E., Tsotras, V.J.: Efficient trajectory joins using symbolic representations. In: Proceedings of the international conference on Mobile data management, pp. 86–93 (2005)Google Scholar
  10. 10.
    Bakalov, P., Hadjieleftheriou, M., Tsotras, V.J.: Time relaxed spatiotemporal trajectory joins. In: Proceedings of the ACM international symposium on Advances in geographic information systems, pp. 182–191 (2005)Google Scholar
  11. 11.
    Benkert, M., Gudmundsson, J., Hbner, F., Wolle, T.: Reporting ock patterns. Computational Geometry 41(1), 111125 (2008)Google Scholar
  12. 12.
    Brilingaite, A.: Location-related context in mobile services. Ph.D. dissertation, Aalborg University (2006)Google Scholar
  13. 13.
    Brinkhoff, T., Kriegel, H.P., Seeger, B.: Efficient processing of spatial joins using r-trees. In: SIGMOD Conference, pp. 237–246 (1993)Google Scholar
  14. 14.
    Cao, H., Mamoulis, N., Cheung, D.W.: Discovery of periodic patterns in spatiotemporal sequences. TJDE 19, 453–467 (2007)Google Scholar
  15. 15.
    Chen, L., Ng, R.: On the marriage of lp-norms and edit distance. In: Proceedings of the international conference on Very large data bases, pp. 792–803 (2004)Google Scholar
  16. 16.
    Chen, L., O¨ zsu,M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: Proceedings of the ACM SIGMOD international conference on Management of data, pp. 491–502 (2005)Google Scholar
  17. 17.
    Chen, Y., Patel, J.M.: Design and evaluation of trajectory join algorithms. In: GIS, pp. 266–275 (2009)Google Scholar
  18. 18.
    Chen, Z., Shen, H.T., Zhou, X.: Discovering popular routes from trajectories. In: ICDE, pp. 900–911 (2011)Google Scholar
  19. 19.
    Dodge, S., Weibel, R., Lautensch¨utz, A.K.: Towards a taxonomy of movement patterns. Information Visualization 7, 240–252 (2008)Google Scholar
  20. 20.
    Douglas, D., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a line or its character. The American Cartographer 10(42), 112–123 (1973)Google Scholar
  21. 21.
    Eppstein, D., Goodrich, M.T., Sun, J.Z.: The skip quadtree: a simple dynamic data structure for multidimensional data. In: SCG, pp. 296–305 (2005)Google Scholar
  22. 22.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)Google Scholar
  23. 23.
    Frank, A., Raper, J., Cheylan, J.P.: Life and motion of spatial socio-economic units. Taylor & Francis, London (2001)Google Scholar
  24. 24.
    Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models. In: KDD, pp. 63–72 (1999)Google Scholar
  25. 25.
    Gid´ofalvi, G., Pedersen, T.B.: Cab-sharing: An effective, door-to-door, on-demand transportation service. In: Proceedings of the 6th European Congress on Intelligent Transport Systems and Services (2007)Google Scholar
  26. 26.
    Gudmundsson, J., van Kreveld, M.: Computing longest duration ocks in trajectory data. In: Proceedings of the ACM international symposium on Advances in geographic information systems, pp. 35–42 (2006)Google Scholar
  27. 27.
    Gudmundsson, J., van Kreveld, M., Speckmann, B.: Efficient detection of motion patterns in spatio-temporal data sets. In: Proceedings of the ACM international symposium on Advances in geographic information systems, pp. 250–257 (2004)Google Scholar
  28. 28.
    Hadjieleftheriou, M., Kollios, G., Bakalov, P., Tsotras, V.J.: Complex spatio-temporal pattern queries. In: VLDB, pp. 877–888 (2005)Google Scholar
  29. 29.
    Han, J., Li, Z., Tang, L.A.: Mining moving object, trajectory and traffic data. In: DASFAA, pp. 485–486 (2010)Google Scholar
  30. 30.
    Iwase, S., Saito, H.: Tracking soccer player using multiple views. In: Proceedings of the IAPR Workshop on Machine Vision Applications (2002)Google Scholar
  31. 31.
    Jeong, S.H., Paton, N.W., Fernandes, A.A., Griffiths, T.: An experimental performance evaluation of spatiotemporal join strategies. Transactions in GIS 9(2), 129–156 (2005)CrossRefGoogle Scholar
  32. 32.
    Jeung, H., Liu, Q., Shen, H.T., Zhou, X.: A hybrid prediction model for moving objects. In: ICDE, pp. 70–79 (2008)Google Scholar
  33. 33.
    Jeung, H., Shen, H.T., Zhou, X.: Convoy queries in spatio-temporal databases. In: Proceedings of the IEEE International Conference on Data Engineering, pp. 1457–1459 (2008)Google Scholar
  34. 34.
    Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S.: Path prediction and predictive range querying in road network databases. The VLDB Journal 19(4), 585–602 (2010)CrossRefGoogle Scholar
  35. 35.
    Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in trajectory databases. Proceedings of the VLDB Endowment 1(1), 1068–1080 (2008)Google Scholar
  36. 36.
    Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Proceedings of the International Symposium on Spatial and Temporal Databases, pp. 364–381 (2005)Google Scholar
  37. 37.
    Karimi, H.A., Liu, X.: A predictive location model for location-based services. In: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems, pp. 126–133 (2003)Google Scholar
  38. 38.
    Laube, P., Imfeld, S.: Analyzing relative motion within groups of trackable moving point objects. In: GIScience, pp. 132–144 (2002)Google Scholar
  39. 39.
    Laube, P., Imfeld, S., Weibel, R.: Discovering relative motion patterns in groups of moving point objects. International Journal of Geographical Information Science 19(6), 639–668 (2005)CrossRefGoogle Scholar
  40. 40.
    Laube, P., van Kreveld, M., Imfeld, S.: Finding remo - detecting relative motion patterns in geospatial lifelines. In: Proceedings of the International Symposium on Spatial Data Handling, pp. 201–214 (2004)Google Scholar
  41. 41.
    Laube, P., Purves, R.S.: An approach to evaluating motion pattern detection techniques in spatio-temporal data. Computers, Environment and Urban Systems 30(3), 347–374 (2006)CrossRefGoogle Scholar
  42. 42.
    Lee, J., Han, J., Whang, K.: Trajectory clustering: a partition-and-group framework. In: Proceedings of the ACMSIGMOD international conference on Management of data, pp. 593–604 (2007)Google Scholar
  43. 43.
    Lee, J.G., Han, J., Li, X., Gonzalez, H.: TraClass: trajectory classification using hierarchical region-based and trajectory-based clustering. PVLDB 1(1), 1081–1094 (2008)Google Scholar
  44. 44.
    Li, Z., Ding, B., Han, J., Kays, R.: Swarm: mining relaxed temporal moving object clusters. PVLDB 3, 723–734 (2010)Google Scholar
  45. 45.
    Li, Z., Ding, B., Han, J., Kays, R., Nye, P.: Mining periodic behaviors for moving objects. In: SIGKDD, pp. 1099–1108 (2010)Google Scholar
  46. 46.
    Li, Z., Ji, M., Lee, J.G., Tang, L.A., Yu, Y., Han, J., Kays, R.: MoveMine: Mining moving object databases. In: Proceedings of the ACM SIGMOD international conference on Management of data, pp. 1203–1206 (2010)Google Scholar
  47. 47.
    Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D.W.: Mining, indexing, and querying historical spatiotemporal data. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 236–245 (2004)Google Scholar
  48. 48.
    Sakr, M.A., Shams, A.: Spatiotemporal pattern queries. Geoinformatica 14 (2010)Google Scholar
  49. 49.
    Samet, H.: Foundations of Multidimensional and Metric Data Structures (The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling). Morgan Kaufmann Publishers Inc. (2005)Google Scholar
  50. 50.
    Sumpter, N., Bulpitt, A.: Learning spatio-temporal patterns for predicting object behaviour. Image Vision Computing 18, 697V704 (2000)Google Scholar
  51. 51.
    Tao, Y., Faloutsos, C., Papadias, D., Liu, B.: Prediction and indexing of moving objects with unknown motion patterns. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 611–622 (2004)Google Scholar
  52. 52.
    Tao, Y., Papadias, D., Sun, J.: The tpr*-tree: An optimized spatio-temporal access method for predictive queries. In: Proceedings of the International Conference on Very Large Data Bases, pp. 790–801 (2003)Google Scholar
  53. 53.
    Tao, Y., Sun, J., Papadias, D.: Analysis of predictive spatio-temporal queries. ACM Transaction on Database Systems 28(4), 295–336 (2003)CrossRefGoogle Scholar
  54. 54.
    Vieira, M.R., Bakalov, P., Tsotras, V.J.: On-line discovery of ock patterns in spatio-temporal data. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 286–295 (2009)Google Scholar
  55. 55.
    Vlachos, M., Gunopoulos, D., Kollios, G.: Discovering similar multidimensional trajectories. In: Proceedings of the IEEE International Conference on Data Engineering, pp. 673–684 (2002)Google Scholar
  56. 56.
    Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions of continuously moving objects. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 331–342 (2000)Google Scholar
  57. 57.
    Wang, Y., Lim, E.P., Hwang, S.Y.: Efficient mining of group patterns from user movement data. DKE 57, 240–282 (2006)CrossRefGoogle Scholar
  58. 58.
    Yi, B.K., Jagadish, H.V., Faloutsos, C.: Efficient retrieval of similar time sequences under time warping. In: Proceedings of the IEEE International Conference on Data Engineering, pp. 201–208 (1998)Google Scholar
  59. 59.
    Yoon, H., Shahabi, C.: Accurate discovery of valid convoys from moving object trajectories. In: IEEE International Conference on Data Mining Workshops, pp. 636–643 (2009)Google Scholar
  60. 60.
    Zheng, K., Trajcevski, G., Zhou, X., Scheuermann, P.: Probabilistic range queries for uncertain trajectories on road networks. In: EDBT, pp. 283–294 (2011)Google Scholar
  61. 61.
    Zhou, P., Zhang, D., Salzberg, B., Cooperman, G., Kollios, G.: Close pair queries in moving object databases. In: Proceedings of the ACM international symposium on Advances in geographic information systems, pp. 2–11 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hoyoung Jeung
    • 1
  • Man Lung Yiu
    • 2
  • Christian S. Jensen
    • 3
  1. 1.École Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Department of ComputingHong Kong Polytechnic UniversityHong KongChina
  3. 3.Department of Computer ScienceAarhus UniversityAarhusDenmark

Personalised recommendations