Skip to main content

Cochlear Contributions to the Precedence Effect

  • Conference paper
  • First Online:
Basic Aspects of Hearing

Abstract

Normal-hearing individuals have sharply tuned auditory filters, and consequently their basilar-membrane (BM) impulse responses (IRs) have durations of several ms at frequencies in the range from 0 to 5 kHz. When presenting clicks that are several ms apart, the BM IRs to the individual clicks will overlap in time, giving rise to complex interactions that have not been fully understood in the human cochlea. The perceptual consequences of these BM IR interactions are of interest as lead-lag click pairs are often used to study localization and the precedence effect. The present study aimed at characterizing perceptual consequences of BM IR interactions in individual listeners based on click-evoked otoacoustic emissions (CEOAEs) and auditory brainstem responses (ABRs). Lag suppression, denoting the level difference between the CEOAE or wave-V response amplitude evoked by the first and the second clicks, was observed for inter-click intervals (ICIs) between 1 and 4 ms. Behavioral correlates of lag suppression were obtained for the same individuals by investigating the percept of the lead-lag click pairs presented either monaurally or binaurally. The click pairs were shown to give rise to fusion (i.e., the inability to hear out the second click in a lead-lag click pair), regardless of monaural or binaural presentation. In both cases, the ICI range where the percept was a fused image correlated well with the ICI range for which monaural lag suppression occurred in the CEOAE and ABR (i.e., for ICIs below 4.3 ms). Furthermore, the lag suppression observed in the wave-V amplitudes to binaural stimulation did not show additional contributions to the lag suppression obtained monaurally, suggesting that peripheral lag suppression up to the level of the brainstem is dominant in the perception of the precedence effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bianchi F, Verhulst, S, Dau T (2013) Experimental evidence for a cochlear source of the precedence effect. Journal of the Association for Research in Otolaryngology (in press)

    Google Scholar 

  • Goblick T Jr, Pfeiffer R (1969) Time-domain measurements of cochlear nonlinearities using combination click stimuli. J Acoust Soc Am 46(4):924–938

    Article  PubMed  Google Scholar 

  • Harte JM, Elliott SJ, Kapadia S, Lutman ME (2005) Dynamic nonlinear cochlear model predictions of click-evoked otoacoustic emission suppression. Hear Res 207(1–2):99–109

    Article  PubMed  Google Scholar 

  • Hartung K, Trahiotis C (2001) Peripheral auditory processing and investigations of the “precedence effect” which utilize successive transient stimuli. J Acoust Soc Am 110(3):1505–1513

    Article  PubMed  CAS  Google Scholar 

  • Irino T, Patterson RD (1997) A time-domain, level-dependent auditory filter: the gammachirp. J Acoust Soc Am 101(1):412–419

    Article  Google Scholar 

  • Junius D, Dau T (2005) Influence of cochlear traveling wave and neural adaptation on auditory brainstem responses. Hear Res 205(1–2):53–67

    Article  PubMed  Google Scholar 

  • Kapadia S, Lutman ME (2000a) Nonlinear temporal interactions in click-evoked otoacoustic ­emissions. I. Assumed model and polarity-symmetry. Hear Res 146(1–2):89–100

    Article  PubMed  CAS  Google Scholar 

  • Kapadia S, Lutman ME (2000b) Nonlinear temporal interactions in click-evoked otoacoustic ­emissions. II. Experimental data. Hear Res 146(1–2):101–120

    Article  PubMed  CAS  Google Scholar 

  • Kemp D, Chum R (1980) Properties of the generator of stimulated acoustic emissions. Hear Res 2:213–232

    Article  PubMed  CAS  Google Scholar 

  • Litovsky RY, Rakerd B, Yin TC, Hartmann WM (1997) Psychophysical and physiological ­evidence for a precedence effect in the median sagittal plane. J Neurophysiol 77(4):2223–2226

    PubMed  CAS  Google Scholar 

  • Litovsky RY, Colburn HS, Yost W, Guzman SJ (1999) The precedence effect. J Acoust Soc Am 106(4):1633–1654

    Article  PubMed  CAS  Google Scholar 

  • Meddis R (1986) Simulation of mechanical to neural transduction in the auditory receptor. J Acoust Soc Am 79(3):702–711

    Article  PubMed  CAS  Google Scholar 

  • Oxenham AJ, Shera CA (2003) Estimates of human cochlear tuning at low levels using forward and simultaneous masking. J Assoc Res Otolaryngol 4(4):541–554

    Article  PubMed  Google Scholar 

  • Patterson RD, Allerhand MH (1995) Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. J Acoust Soc Am 98(4):1890–1894

    Article  PubMed  CAS  Google Scholar 

  • Picton TW (2011) Human auditory evoked potentials. Plural, San Diego

    Google Scholar 

  • Puria S (2003) Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions. J Acoust Soc Am 113(5):2773–2789

    Article  PubMed  Google Scholar 

  • Rakerd B, Hsu J, Hartmann WM (1997) The Haas effect with and without binaural differences. J Acoust Soc Am 101:3083

    Article  Google Scholar 

  • Shera CA, Guinan JJ (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105(2):782–798

    Article  PubMed  CAS  Google Scholar 

  • Shera CA, Guinan JJ (2007) Mechanisms of mammalian otoacoustic emission. In: Manley A, Fay FF, Popper AN (eds) Active processes and otoacoustic emissions in hearing. Springer, New York, pp 306–342

    Google Scholar 

  • Shera CA, Guinan JJ, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: validation in the chinchilla. J Assoc Res Otolaryngol 11(3):343–365

    Article  PubMed  Google Scholar 

  • Sisto R, Moleti A (2008) Transient evoked otoacoustic emission input/output function and cochlear reflectivity: experiment and model. J Acoust Soc Am 124(5):2995–3008

    Article  PubMed  Google Scholar 

  • Verhulst S, Harte JM, Dau T (2011a) Temporal suppression of the click-evoked otoacoustic ­emission level-curve. J Acoust Soc Am 129(3):1452–1463

    Article  PubMed  Google Scholar 

  • Verhulst S, Shera CA, Harte JM, Dau T (2011b) Can a static nonlinearity account for the dynamics of otoacoustic emission suppression? In: Shera CA, Olsen E (eds) What fire is in mine ears: progress in auditory biomechanics. AIP, Melville, pp 257–263

    Google Scholar 

  • Wallach H, Newman E, Rozenzweig R (1949) The precedence effect in sound localization. Am J Psychol 42(3):315–336

    Article  Google Scholar 

  • Zweig G, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic ­emissions. J Acoust Soc Am 98(4):2018–2047

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work supported by Technical University of Denmark and Oticon Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Verhulst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Verhulst, S., Bianchi, F., Dau, T. (2013). Cochlear Contributions to the Precedence Effect. In: Moore, B., Patterson, R., Winter, I., Carlyon, R., Gockel, H. (eds) Basic Aspects of Hearing. Advances in Experimental Medicine and Biology, vol 787. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1590-9_32

Download citation

Publish with us

Policies and ethics