Skip to main content

Reducing process-induced toxins in foods

  • Chapter
  • First Online:
Green Technologies in Food Production and Processing

Part of the book series: Food Engineering Series ((FSES))

Abstract

Over the last 35 years, accumulated evidence has shown that cooking raw food materials at high temperature (>100°C) may produce substances that are toxic to humans. Considerable global research provided new knowledge, which currently attests that the amount and rate of formation of these toxic substances are determined by the nature and amount of precursors, heating temperature, and length. This new knowledge has been important in defining parameters to reduce the formation of major process-induced toxicants such as nitrosamine, heterocyclic aromatic amines, and acrylamide in finished foods and, therefore minimize human health risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulkarim, B.G., and J.S. Smith. 1998. Heterocyclic amines in fresh and processed meat products. Journal of Agricultural and Food Chemistry 46: 4680–4687.

    Article  CAS  Google Scholar 

  • Ahn, H.J., J.H. Kim, C. Jo, et al. 2003. N-nitrosamine reduction in salted and fermented anchovy sauce by ionization energy. Food Control 14: 553–557.

    Article  CAS  Google Scholar 

  • Ahn, H.J., J.H. Kim, C. Jo, et al. 2006. Reduction of carcinogenic N-nitrosamines and residual nitrite in model system sausage irradiation. Journal of Food Science 67: 1370–1373.

    Article  Google Scholar 

  • Akpambang, V.O.E., G. Purcaro, L. Lajide, et al. 2009. Determination of polycyclic aromatic hydrocarbons (PAHs) in commonly consumed smoked/grilled fish and meat. Food Additives and Contaminants Part A 26: 1096–1103.

    Article  CAS  Google Scholar 

  • Alaejos, M.S., V. Gonzalez, and A.M. Afonso. 2008a. Exposure to heterocyclic aromatic amines from the consumption of cooked red meat and its effect on human cancer risk: A review. Food Additives and Contaminants Part A 25: 2–24.

    Article  CAS  Google Scholar 

  • Alaejos, M.A., V. Pinto, and A.M. Afonso. 2008b. Metabolism and toxicology of heterocyclic aromatic amines when consumed in diet: Influence of the genetic susceptibility to develop human cancer: A review. Food Research International 41: 327–340.

    Article  CAS  Google Scholar 

  • Ames, J.M. 2009. Dietary Maillard reaction products: Implications for human health and disease. Czech Journal of Food Sciences 27(special issue): S66–S69.

    CAS  Google Scholar 

  • Amrein, T.M., S. Bachmann, A. Noti, et al. 2003. Potential of acrylamide formation, sugars, and free asparagines in potatoes: A comparison of cultivars and farming system. Journal of Agricultural and Food Chemistry 51: 555–5560.

    Article  CAS  Google Scholar 

  • Andrade, R., F.G.R. Reyes, and S. Rath. 2005. A method for the determination of volatile N-nitrosamines in food by HS-SPME-GC-TEA. Food Chemistry 91: 173–179.

    Article  CAS  Google Scholar 

  • Andrzejewski, D., J.A.G. Roach, M.L. Gay, et al. 2004. Analysis of coffee for the presence of acrylamide by LC-MS/MS. Journal of Agricultural and Food Chemistry 52: 1996–2002.

    Article  CAS  Google Scholar 

  • Anonymous. 1984. The food and drugs act and regulations. Table XI with amendments to January 1982 Issued by the Department of Health and Welfare (now Department of Health or commonly referred to as Health Canada).

    Google Scholar 

  • Anonymous. 2010. Guidelines for canadian drinking water quality: Summary Table, Health Canada. http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/2010-sum_guide-res_recom/index-eng.php.

  • AOAC. 1995. Official methods of analysis of the association of official analytical chemists, 16th ed. Gaithersburg: Association of Official Analytical Chemists.

    Google Scholar 

  • Ascherio, A., S.M. Zhang, I. Hernan, et al. 2001. Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Annals of Neurology 50: 56–63.

    Article  CAS  Google Scholar 

  • Awney, H.A., and H. Sindi. 2010. The effect of rosemary on the mutagenicity of heterocyclic amines extracted from common food consumed in Saudi Arabia. International Journal of Food Sciences and Nutrition 61: 192–203.

    Article  CAS  Google Scholar 

  • Back, Y.M., J.H. Lee, H.S. Shin, et al. 2009. Analysis of heterocyclic amines and ß-carbolines by liquid chromatography-mass spectrometry in cooked meats commonly consumed in Korea. Food Additives and Contaminants Part A 26: 298–305.

    Article  CAS  Google Scholar 

  • Bagdonaite, K., and M. Murkovic. 2004. Factors affecting the formation of acrylamide in coffee. Czech Journal of Food Sciences 22(special issue): 22–24.

    CAS  Google Scholar 

  • Bagdonaite, K., K. Derler, and M. Murkovic. 2008. Determination of acrylamide during roasting of coffee. Journal of Agricultural and Food Chemistry 56: 6081–6086.

    Article  CAS  Google Scholar 

  • Balogh, Z., J.I. Gray, E.A. Gomma, et al. 2000. Formation and inhibition of heterocyclic amines in fried ground patties. Food and Chemical Toxicology 38: 395–401.

    Article  CAS  Google Scholar 

  • Baum, M., N. Bohm, J. Gorlitz, et al. 2008. Fate of 14C-acrylamide in roasted and ground coffee during storage. Molecular Nutrition and Food Research 52: 600–608.

    Article  CAS  Google Scholar 

  • Becalski, A., B.P.-Y. Lau, D. Lewis, et al. 2003. Acrylamide in foods: Occurrence, sources and modelling. Journal of Agricultural and Food Chemistry 51: 802–808.

    Article  CAS  Google Scholar 

  • Becalski, A., and S. Seaman. 2005. Furan precursors in food: A model study and development of simple headspace method for determination of furan. Journal of AOAC International 88: 102–106.

    CAS  Google Scholar 

  • Brathen, E., A. Kita, S.H. Knutsen, et al. 2005. Addition of glycine reduces the content of acrylamide in cereal and potato products. Journal of Agricultural and Food Chemistry 43: 3259–3264.

    Article  CAS  Google Scholar 

  • Burch, R., A. Trzesicks, M. Clarke, et al. 2008. The effects of low-temperature potato storage and washing and soaking pre-treatment on the acrylamide content of French fries. Journal of the Science of Food and Agriculture 88: 989–995.

    Article  CAS  Google Scholar 

  • Busquets, R., L. Ouignou, M.T. Galceran, et al. 2006. Effect of red wine marinades on the formation of heterocyclic amines in fried chicken breast. Journal of Agricultural and Food Chemistry 54: 8376–8384.

    Article  CAS  Google Scholar 

  • Canada Gazette. 2009. Order amending Schedule I to the hazardous product act (bisphenol A). 143(26). http://www.gazette.gc.ca/rp-pr/p1/2009/2009-06-27/html/reg5-eng.html. Accessed 27 June 2009.

  • Castle, L., and S. Eriksson. 2005. Analytical methods used to measure acrylamide concentrations in foods. Journal of AOAC International 88: 274–283.

    CAS  Google Scholar 

  • Chen, B.H., and C.P. Chiu. 1998. Analysis, formation and inhibition of heterocyclic amines in foods: An overview. Journal of Food and Drug Analysis 6: 625–636.

    CAS  Google Scholar 

  • Cheng, K.-W., C.C. Wong, J. Chao, et al. 2009. Inhibition of mutagenic PhIP formation by epigallocatechin gallate via scavenging of phenylacetaldehyde. Molecular Nutrition and Food Research 53: 716–725.

    Article  CAS  Google Scholar 

  • Cheng, K.-W., Q. Wu, Z.P. Zheng, et al. 2007. Inhibitory effect of fruits extracts on the formation of heterocyclic amines. Journal of Agricultural and Food Chemistry 55: 10359–10365.

    Article  CAS  Google Scholar 

  • CIAA. 2007. Acrylamide toolbox: A “toolbox” for the reduction of acrylamide in breakfast cereals. http://www.ciaa.be/asp/documents/l1.asp?doc_id=822.

  • CIAA. 2009. Acrylamide toolbox-rev. http://www.ciaa.eu/asp/documents/brochures_form.asp?doc_id=65. Accessed 12 Feb 2009.

  • Ciesarova, Z., K. Kukurova, A. Bednarikova, et al. 2009. Improvement of cereal product safety by enzymatic way of acrylamide mitigation. Czech Journal of Food Sciences 27(special issue): S96–S98.

    CAS  Google Scholar 

  • Cirilo, M.P.G., S. Coelho, C.M. Araujo, et al. 2003. Profile and levels of bioactive amines in green and roasted coffee. Food Chemistry 82: 397–402.

    Article  CAS  Google Scholar 

  • Claus, A., R. Carle, and A. Schieber. 2008. Acrylamide in cereal products: A review. Journal of Cereal Science 47: 118–133.

    Article  CAS  Google Scholar 

  • Colin, C. 2010. The determination of N-Nitrosamines in food. Quality Assurance and Safety of Crops & Foods 2: 2–12.

    Article  CAS  Google Scholar 

  • Conference on Chemical Reaction in Foods V. 2004. Czech Journal of Food Science. Special issue.

    Google Scholar 

  • Costa, M., O. Viegas, A. Melo, et al. 2009. Heterocyclic aromatic amine formation in barbecued sardines (sardine pilchardus) and Atlantic Salmon (Salmo salar). Journal of Agricultural and Food Chemistry 57: 3173–3179.

    Article  CAS  Google Scholar 

  • Crews, C., D. Roberts, S. Lauryssen, et al. 2009. Survey of furan in foods and coffees from five European Union countries. Food Additives and Contaminants Part B 2: 95–98.

    Article  CAS  Google Scholar 

  • Cross, A.J., U. Peters, V.A. Kirsh, et al. 2005. A perspective study of meat and meat mutagens and prostate cancer risk. Cancer Research 65: 11779–11784.

    Article  CAS  Google Scholar 

  • Derave, W., and Y. Taes. 2009. Beware of the pickle: Health effects of nitrate intake. Journal of Applied Physiology 107: 1677.

    Article  Google Scholar 

  • De la Monte, S.M., A. Neusner, J. Chu, et al. 2009. Epidemiological trends strongly suggest exposures as etiologic agents in the pathogenesis of sporadic Alzheimer’s disease, diabetes mellitus, and non-alcoholic steatohepatitis. Journal of Alzheimer’s Disease 17: 519–529.

    Google Scholar 

  • De Wilde, T., B. De Meulenaer, F. Mestdagh, et al. 2004. Acrylamide formation during frying of potatoes: Thorough investigation on the influence of crop and process variables. Czech Journal of Food Sciences 22(special issue): 15–18.

    Google Scholar 

  • ElAmin A. 2007. EU reveals acrylamide recommendations. http://www.confectionarynews.com/Publications/Food-Beverage-Nutrition/Food.

  • El-Saied, M.H., A.M. Sharaf, M.M. Abul-Fadl, et al. 2008. Reduction of acrylamide formation in fried potato strips by different pre-frying treatments. World Journal of Dairy & Food Sciences 3: 17–24.

    Google Scholar 

  • Erdoglu, E., T.K. Palazoglu, V. Gokmen, et al. 2007. Reduction of acrylamide formation in French fries by microwave pre-cooking of potato strips. Journal of the Science of Food and Agriculture 87: 133–137.

    Article  CAS  Google Scholar 

  • ECFQ&S. 2005. (European Commission Food Quality and Safety) Heat-generated toxicants: Identification, characterization and risk minimisation (The HEATOX Project 506820).

    Google Scholar 

  • EFSA. 2004. (European Food Safety Authority) Report of the scientific panel on contaminants in the food chain on provisional findings on furan in food. EFSA Journal 137: 1–20. http://www.efsa.europa.eu/EFSA/efsa_locat_11786620753812_1178620772979.htm.

  • EFSA. 2008. (European Food Safety Authority) EFSA opinion on suitable indicators for both the occurrence and toxicity of polycyclic aromatic hydrocarbons (PAHs) in food. http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_1211902034860.htm.

  • El-Ziney, M.G., A.A. Al-Turki, and M.S. Tawfik. 2009. Acrylamide status in selected traditional Saudi foods and infant estimation of daily exposure. American Journal of Food Technology 4: 177–191. doi:DOI=ajft.2009.177.191.

    Article  CAS  Google Scholar 

  • Fan, X., L. Huang, and K.J.B. Sokorai. 2008. Factors affecting thermally induced furan formation. Journal of Agricultural and Food Chemistry 56: 9490–9494.

    Article  CAS  Google Scholar 

  • FAO/WHO. 2006. Evaluation of certain food contaminants: Sixty-fourth report of the joint FAO/WHO Expert Committee on Food Additive. WHO Technical Report Series 930.

    Google Scholar 

  • FDA. 2003. Detection and quantitation of acrylamide in foods. http://www.fda.gov/Food/FoodSafety/FoodContaminantsAdultration/ChemicalContami.

  • FDA. 2004. Exploratory data on furan in food. http://www.fda.gov. Determination of furan in foods, http://www.cfsan.fda.gov.

  • FDA. 2010. Update on bisphenol A for use in food contact applications: January 2010. http://www.fda.gov/NewsEvents/PublicHealthFocus/ucm197739.htm.

  • Felton, J.S., E. Fultz, F.A. Dolbeare, et al. 1992. Reduction of heterocyclic aromatic amine mutagens/carcinogens in fried beef patties by microwave treatment. Mutatation Research 259: 205–218.

    Article  Google Scholar 

  • Food mutagens: The cooking makes a difference. https://www.llnl.govt/str/FoodSections3.html.

  • Friedman, M., and C.E. Levin. 2008. Review of methods for the reduction of dietary content and toxicity of acrylamide. Journal of Agricultural and Food Chemistry 56: 6113–6140.

    Article  CAS  Google Scholar 

  • Fredriksson, H., J. Tallving, J. Rosen, et al. 2005. Fermentation reduces free asparagines in dough acrylamide content in bread. Journal of Agricultural and Food Chemistry 53: 3259–3264.

    Article  CAS  Google Scholar 

  • Gloria, M.B.A., J.F. Barbour, and R.A. Scanlan. 1997. Volatile nitrosamines in fried bacon. Journal of Agricultural and Food Chemistry 45: 1816–1818.

    Article  CAS  Google Scholar 

  • Granby, K., and S. Fagt. 2004. Analysis of acrylamide in coffee and exposure to acrylamide from coffee. Analytica Chimica Acta 520: 177–182.

    Article  CAS  Google Scholar 

  • Gulceran, M.T., and L. Puignou. 2006. Latest developments in the analysis of heterocyclic amines in cooked foods. In Acrylamide and other hazardous compounds in heat-treated foods, ed. K. Skog and J. Alexander. Cambridge, UK: Woodhead.

    Google Scholar 

  • Gray, J.I., and J.D. Morton. 1981. Some toxic compounds produced in food by cooking and ­processing. International Journal of Food Sciences and Nutrition 35: 5–23.

    Article  CAS  Google Scholar 

  • Hamlet, C.G., P. Saad, and L. Liang. 2008. Correlation between the amount of free asparagine and saccharides present in commercial cereal flours in the United Kingdom and the generation of acrylamide during cooking. Journal of Agricultural and Food Chemistry 56: 6145–6153.

    Article  CAS  Google Scholar 

  • Harington, R. 2009. EU proposal to add acrylamide to hazardous chemical list. http://www.foodproductiondaily.com/content/view/print/258349.

  • Hasse, N.U. 2006. The formation of acrylamide in potato products. In Acrylamide and other hazardous compounds in heat-treated foods, ed. K. Skog and J. Alexander. Cambridge, UK: Woodhead.

    Google Scholar 

  • Hasnip, S., C. Crews, and L. Castle. 2006. Some factors affecting the formation of furan in heated foods. Food Additives and Contaminants Part A 23: 219–227.

    Article  CAS  Google Scholar 

  • Health Canada. 2003. The determination of acrylamide in foods by LC-ESI-MS-MS. http://www.hc-sc.gc.ca/fn-an/res-rech/analy-meth/chem/lps_003-eng.php.

  • Health Canada. 2008a. Acrylamide levels in selected Canadian foods. http://www.hc-sc.gc.ca/fn-an/securit/chem-chim/food-aliment/acrylamide/acrylamide_level-acrylamide_niveau-eng.php.

  • Health Canada. 2008b. Canadian exposure assessment for acrylamide in food. http://www.hc-sc.gc.ca/fn-an/securit/chem-chim/food-aliment/acrylamide/can_exp_acryl_food-alim-eng.php.

  • Health Canada. 2009a. Health Canada’s acrylamide monitoring program. http://www.hc-sc.gc.ca/fn-an/securit/chem-chim/food-aliment/acrylamide/monitoring-prog-surveillance-eng.php.

  • Health Canada. 2009b. Health Canada’s proposal to amend the food and drug regulations to permit the use of a second source (Aspergillus niger ASP72) of the enzyme asparaginase in certain food products. http://www.hc-sc.gc.ca/fn-an/consultation/init/_dec2009-asparaginase/asp-niger-draft-ebauche-eng.php. Accessed December 2009.

  • HEATOX. 2007. Heat-generated food toxicants: Identification, characterization and risk minimisation. Final report, April

    Google Scholar 

  • HHS. 2010. United States Department of Health and Human Service Bisphenol A (BPA). Information for Parents. 15 January 2010. http://www.hhs.gov/safety/bpa/.

  • Hogervorst, J.G.E., L.J. Schouten, E.J.M. Konings, et al. 2009a. Dietary acrylamide intake and brain cancer risk. Cancer Epidemiology Biomarkers and Prevention 18: 1663–1666.

    Article  CAS  Google Scholar 

  • Hogervorst, J.G.F., L.J. Schouten, E.J.M. Konings, et al. 2009b. Lung cancer risk in relation to dietary acrylamide intake. Journal of the National Cancer Institute 101: 651–662.

    Article  CAS  Google Scholar 

  • IARC. 1978. Evaluation of the carcinogenic risk of chemicals to humans (Some N-Nitroso compounds) International Agency for Research on Cancer, vol. 17, 125. Lyon, France: IARC.

    Google Scholar 

  • IARC. 1993. Monographs on the evaluation of carcinogenic risks to human (Heterocyclic aromatic amines), vol. 56, 165–195. Lyon, France: International Agency for Research on Cancer.

    Google Scholar 

  • IARC. 1994. Monographs on the evaluation of carcinogenic risks to human (Acrylamide). Lyon, France: International Agency for Research on Cancer.

    Google Scholar 

  • IARC. 1995. Monographs on the evaluation of carcinogenic risks to human (Furan). Lyon, France: International Agency for Research on Cancer.

    Google Scholar 

  • IFT. 2010. Acrylamide. http://www.ifst.org/science_technology_resources/for_food_professionals/information_and_news/acrylamide/.

  • Jackson, L.S. 2009. Chemical food safety issues in the United States: Past, present, and future. Journal of Agricultural and Food Chemistry 57: 8161–8170.

    Article  CAS  Google Scholar 

  • Jautz, U., M. Gibis, and G.E. Morlock. 2008. Quantification of heterocyclic aromatic amines in fried meat by HPTLC/UV-FLD and HPLC/UV-FLD: A comparison of two methods. Journal of Agricultural and Food Chemistry 56: 4311–4319.

    Article  CAS  Google Scholar 

  • Kataoka, H., K. Kijima, and G. Maruo. 1998. Determination of mutagenic heterocyclic amines in combustion smoke samples. Bulletin of Environmental Contamination and Toxicology 60: 60–67.

    Article  CAS  Google Scholar 

  • Klurfeld, D.M. 2001. Maternal cured meat consumption during pregnancy and risk of paediatric brain tumour in offspring: Potential harmful levels of intake (Letters to the Editor). Public Health Nutrition 4: 1303–1305. doi:10.1079/PHN2001270; 10.1079/PHN2001271 .

    Article  CAS  Google Scholar 

  • Knize, M.G., F.A. Dolbeare, K.L. Carroll, et al. 1994. Effect of cooking time and temperature on the heterocyclic amine content of fried beef patties. Food and Chemical Toxicology 32: 595–603.

    Article  CAS  Google Scholar 

  • Kukurova, K., Z. Ciesarova, A. Bednarikova, et al. 2009. Effect of inorganic salts on acrylamide formation in cereal matrices. Czech Journal of Food Sciences 27(special issue): S425–S428.

    CAS  Google Scholar 

  • Leaf, A. 2008. Historical overview on n-3 fatty acids and coronary heart disease. The American Journal of Clinical Nutrition 78: 237–245.

    Google Scholar 

  • Leitzmann, M.F., M.J. Stampler, W.C. Willet, et al. 2002. Coffee intake in associated with lower risk of symptomatic gallstone disease in women. Gastroenterology 1232: 1823–1830.

    Article  Google Scholar 

  • Maga, J.A. 1979. Furans in foods. CRC Critical Reviews in Foods Science and Nutrition 11: 355–400.

    Article  CAS  Google Scholar 

  • Matthaus, B., N.U. Haase, and K. Vosmann. 2004. Factors affecting the concentration of acrylamide during deep-fat frying of potatoes. European Journal of Lipid Science and Technology 106: 793–801.

    Article  CAS  Google Scholar 

  • Mestdagh, F., B. Meulenaer, C. Van Peteghem, et al. 2004. Towards a better understanding in acrylamide formation, degradation and reduction in model systems (and foodstuffs). Czech Journal of Food Sciences 22(special issue): 11–14.

    CAS  Google Scholar 

  • Melo, A., O. Viegas, C. Petisca, et al. 2008. Effect of beer/red wine marinades on the formation of heterocyclic aromatic amines in pan-fried beef. Journal of Agricultural and Food Chemistry 56: 10625–10632.

    Article  CAS  Google Scholar 

  • Mhlongo, S.H., B.B. Mamba, and R.W. Krause. 2009. Nitrosamines: A review on their prevalence as emerging pollutants and potential remedial options. Water SA 35: 735–739.

    Article  CAS  Google Scholar 

  • Micha, R., S.K. Wallace, and D. Mozaffarian. 2010. Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus. A systematic review and meta analysis. Circulation 121: 2271–2283. doi:10.1161/CIRCULATIONAHA.109.924977.

    Article  Google Scholar 

  • Miller, B.J., S.M. Billedeau, and D.W. Miller. 1989. Formation of N-nitrosamines in microwaved versus skillet-fried bacon containing nitrite. Food and Chemical Toxicology 27: 295–299.

    Article  CAS  Google Scholar 

  • Morehouse, K.M., P.J. Nyman, T.P. McNeal, et al. 2007. Summary of furan in heat processed foods by headspace gas chromatography/mass spectrometry and estimated adult exposure. Food Additives and Contaminants Part A 25: 259–264.

    Article  CAS  Google Scholar 

  • Mottram, D.S., M.Y. Low, and J.S. Elmore. 2006. The Maillard reaction and its role in the formation of acrylamide and other potentially hazardous compounds in foods. In Acrylamide and other hazardous compounds in heat-treated foods, ed. K. Skog and J. Alexander. Cambridge, UK: Woodhead, CRC Press.

    Google Scholar 

  • Mottram, D.S., B.L. Wedzicha, and A.T. Dodson. 2002. Acrylamide is formed in the Maillard reaction. Nature 419: 448–449. doi:10.1038/419448a.

    Article  CAS  Google Scholar 

  • Murkovic, M. 2006. Mechanism for the formation of PhIP in foods. In Acrylamide and other hazardous compounds in heat-treated foods, ed. K. Skog and J. Alexander. Cambridge, UK: Woodhead.

    Google Scholar 

  • Murkovic, M., D. Steinberger, and W. Pfannhauser. 1998. Antioxidant spices reduce the formation of heterocyclic amines in fried meat. Zeitschrift fur Lebensmittel Untersuchung und Forschung A 207: 477–480.

    Article  CAS  Google Scholar 

  • Mustafa, A., R. Andersson, K.-E. HellEnas, et al. 2008. Moisture enhances acrylamide reduction during storage in model studies of rye crisp bread. Journal of Agricultural and Food Chemistry 56: 11234–11237.

    Article  CAS  Google Scholar 

  • Muttucumaru, N., J.S. Elmore, T. Curtis, et al. 2008. Reducing acrylamide precursors in raw materials derived from wheat and potato. Journal of Agricultural and Food Chemistry 56: 6167–6172.

    Article  CAS  Google Scholar 

  • Naccari, C., M.T. Galceran, E. Moyano, et al. 2009. Presence of heterocyclic aromatic amines (HAs) in smoked “Provola” cheese from Calabria (Italy). Food and Chemical Toxicology 47: 321–327.

    Article  CAS  Google Scholar 

  • Ni, W., L. McNaughton, D.M. LeMaster, et al. 2008. Quantitation of 13-heterocyclic aromatic amines in cooked beef, pork, and chicken by liquid chromatography-electron spray ionization/tandem mass spectrometry. Journal of Agricultural and Food Chemistry 56: 68–78.

    Article  CAS  Google Scholar 

  • Nothlings, U., L. Wilkens, S. Murphy, et al. 2008. Meat intake increases the risk for pancreatic cancer: The multiethnic cohort. Amer Assoc Cancer Res, Annual Meeting, San Diego, April 12–16, Abstract #5821.

    Google Scholar 

  • NCSU: FS Muscle Foods & Eggs: Meat consumption trends & Nutritional value. www.cals.ncsu.edu/course/ans020/Trends.ppt.

  • Oesterdahl, B.-G., and E. Elriksson. 1990. Volatile nitrosamines in microwave-cooked bacon. Food Additives and Contaminants Part A 7: 51–54.

    Article  CAS  Google Scholar 

  • Pagoda, J.M., and S. Preston-Martin. 2001. Maternal cured meat consumption during pregnancy and risk of paediatric brain tumour in offspring: Potentially harmful levels of intake. public Health Nutrition 4(183–189): 1304–1305.

    Google Scholar 

  • Palazoglu, T.K., and V. Gokmen. 2008. Reduction of acrylamide level in French Fries by employing a temperature program during frying. Journal of Agricultural and Food Chemistry 56: 6162–6166.

    Article  CAS  Google Scholar 

  • Park, J.H., and T.M. Penning. 2009. Polyaromatic hydrocarbons. In Process-induced food toxicants occurrence, formation, mitigation, and health risks, ed. R.H. Stadler and D.H. Lineback. Hoboken: Wiley.

    Google Scholar 

  • Pedreshi, F., K. Kaack, K. Granby, et al. 2007. Acrylamide reduction under different pre-treatments in French Fries. Journal of Agricultural and Food Chemistry 79: 1287–1294.

    Google Scholar 

  • Pegg, R.B., and F. Shahidi (eds.). 2000. Nitrite curing of meat: The nitrosamine problem and nitrite alternatives. Hoboken: John Wiley InterScience. DOI:10.1002/9780470385081.

    Google Scholar 

  • Perez, D.M., G.G. Alatorre, E.B. Alvarez, et al. 2008. Solid-phase microextraction of N-nitrosomethylamine in beer. Food Chemistry 107: 1348–1352.

    Article  CAS  Google Scholar 

  • Perez-Locas, C. 2008. Mechanism of formation of thermally generated potential toxicant in food related model system. Dissertation, McGill University, Montreal, Canada.

    Google Scholar 

  • Perez-Lucas, C., and V.A. Yaylayan. 2004. Origin and mechanistic pathways of formation of the parent furan- a food toxicant. Journal of Agricultural and Food Chemistry 52: 6830–6836.

    Article  CAS  Google Scholar 

  • Persson, E., I. Sjoholm, and K. Skog. 2003. Effect of high water-holding capacity on the formation of heterocyclic amines in fried beefburgers. Journal of Agricultural and Food Chemistry 51: 4472–4477.

    Article  CAS  Google Scholar 

  • Persson, T., and E. von Sydow. 1973. Aroma of canned beef: Gas chromatographic and mass spectrometric analysis of volatiles. Journal of Food Sciences 38: 377–385.

    Article  CAS  Google Scholar 

  • Preston-Martin, S., J.M. Pagoda, B.A. Mueller, et al. 1996. Maternal consumption of cured meats and vitamin in relation to pediatric brain tumors. Epidemiology Biomarkers & Prevention 5: 599–605.

    CAS  Google Scholar 

  • Puangsombat, K., and J.S. Smith. 2010. Inhibition of heterocyclic amine formation in beef patties by ethanol extracts of Rosemary. Journal of Food Sciences 75: T40–T47. doi:10.1111/j.1750-3841.2009.01491.x.

    Article  CAS  Google Scholar 

  • Rohrmann, S., S.-U.L. Jung, J. Linseisen, et al. 2009. Dietary intake of meat and meat-derived heterocyclic aromatic amine and their correlation with DNA-adduct in female breast. Mutagenesis 24: 127–132.

    Article  CAS  Google Scholar 

  • Rothamsted Research “Low Acrylamide Potatoes”. http://www.acrylamide-potato.org.uk.

  • Saleh, S.I., and M. El-Okazy. 2007. Assessment of the mean daily dietary intake of acrylamide in Alexandria. The Journal of the Egyptian Public Health Association 82: 331–345.

    Google Scholar 

  • Salmon, C.P., M.G. Knize, J.S. Felton, et al. 2006. Heterocyclic aromatic amines in domestically prepared chicken and fish from Singapore Chinese household. Food and Chemical Toxicology 44: 484–489.

    Article  CAS  Google Scholar 

  • Seal, C.J., A. De Mula, G. Eisenbrand, et al. 2008. Risk-benefit considerations of mitigation measures on acrylamide content of foods: A case study on potatoes, cereals and coffee. British Journal of Nutrition 99: S1–S46.

    Article  CAS  Google Scholar 

  • Sen, N.P., and P.A. Baddoo. 1997. Trends in the levels of residual nitrite in Canadian cured meat product over the past 25 years. Journal of Agricultural and Food Chemistry 45: 4714–4718.

    Article  CAS  Google Scholar 

  • Sinha, R., W.H. Chow, M. Kulldorff, et al. 1999. Well-done, grilled red meat increases the risk of colorectal adenomas. Cancer Research 59: 4320–4324.

    CAS  Google Scholar 

  • Sinha, R., D.R. Gustafson, M. Kulldorff, et al. 2000. 2-Amino-1-methyl-6-phenyl- imidazole[4,5-b]pyridine, a carcinogen in high temperature cooked meat, and breast cancer risk. Journal of the National Cancer Institute 92: 1352–1354.

    Article  CAS  Google Scholar 

  • Sinha, R., M. Kulldorf, J. Curtin, et al. 1998a. Fried, well-done red meat and risk of lung cancer in women (United States). Cancer Causes Control 9: 621–630.

    Article  CAS  Google Scholar 

  • Sinha, R., N. Rothman, C.P. Salmon, et al. 1998b. Heterocyclic amine content in beef cooked by different methods and to varying degrees of doneness. Food and Chemical Toxicology 36: 279–287.

    Article  CAS  Google Scholar 

  • Sinha, R., M.G. Knize, C.P. Salmon, et al. 1998c. Heterocyclic amine content of pork products cooked by different methods and to varying degrees of doneness. Food and Chemical Toxicology 36: 289–297.

    Article  CAS  Google Scholar 

  • Sinha, R., N. Rothman, E.D. Brown, et al. 1994. Pan-fried meat containing high levels of heterocyclic aromatic amines but low levels of polycyclic aromatic hydrocarbons induces cytochrome P4501A2 activity in human. Cancer Research 54: 6154–6159.

    CAS  Google Scholar 

  • Sinha, R., N. Rothman, E.D. Brown, et al. 1995. High concentrations of carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) occur in chicken but are dependent on the cooking method. Cancer Research 55: 4516–4519.

    CAS  Google Scholar 

  • Sinha, R., and E.G. Snyderwine. 2001. Heterocyclic amines (HCAS) and risk of breast cancer. Breast Cancer Research 3(Suppl 1): A60. doi:10.1186/bcr389.

    Article  Google Scholar 

  • Skog, K., and J. Alexander (eds.). 2006. Acrylamide and other hazardous compounds in heat-treated foods. Cambridge, UK: Woodhead, CRC Press.

    Google Scholar 

  • Skog, K., and M. Jagerstad. 1991. Effects of glucose on the formation of PhIP in model system. Carcinogenesis 12: 2297–2300.

    Article  CAS  Google Scholar 

  • Smith, J.S., F. Ameri, and P. Gadgil. 2008. Effect of marinades on the formation of heterocyclic amines in grilled beef steaks. Journal of Food Sciences 73: T100–T105.

    Article  CAS  Google Scholar 

  • Soares, C., S. Cunha, and J.O. Fernandes. 2006. Determination of acrylamide in coffee products by GC-MS using an improved SPE clean up. Food Additives and Contaminants Part A 23: 1276–1282.

    Article  CAS  Google Scholar 

  • Soares, C., and J.O. Fernandes. 2009. MSPD method to determine acrylamide in food. Food Analytical Methods 2: 197–203.

    Article  Google Scholar 

  • Stadler, R.H. 2006. The formation of acrylamide in cereal products and coffee. In Acrylamide and other hazardous compounds in heat-treated foods, ed. K. Skog and J. Alexander. Cambridge, UK: Woodhead.

    Google Scholar 

  • Stadler, R.H., I. Blank, N. Varga, et al. 2002. Acrylamide from Maillard reaction products. Nature 419: 449.

    Article  CAS  Google Scholar 

  • Stadler, R.H., and D.H. Lineback (eds.). 2009. Process-induced food toxicants: occurrence, formation, mitigation, and health risk. New York: Wiley.

    Google Scholar 

  • Studer, A., I. Blank, and R.H. Stadler. 2004. Thermal processing contaminants in foodstuffs and potential strategies of control. Czech Journal of Food Sciences 22(special issue): 1–10.

    CAS  Google Scholar 

  • Sugimura, T., N. Nagao, T. Kawachi, et al. 1977. Mutagen-carcinogens in food, with special reference to highly mutagenic pyrolysis products in broiled foods. In Origin of human cancer, ed. H.H. Hiatt, J.D. Watson, and J.A. Winstein, 1561–1577. Cold Spring Harbor, NY: Book C. Cold Spring Harbor Laboratory.

    Google Scholar 

  • Summa, C.A., B. de la Calle, M. Brohee, et al. 2007. Impact of the roasting degree of coffee on the in vivo radical scavenging capacity and content of acrylamide. LWT- Food Science and Technology 40: 1849–1854.

    Article  CAS  Google Scholar 

  • Surdyk, M., J. Rosen, R. Anderson, et al. 2004. Effects of asparagines, fructose, and baking conditions on acrylamide content in yeast-leavened wheat bread. Journal of Agricultural and Food Chemistry 52: 2047–2051.

    Article  CAS  Google Scholar 

  • Symposium on the chemistry and toxicology of acrylamide. 2008. Journal of Agricultural and Food Chemistry 56:5983–6776 (special issue).

    Google Scholar 

  • Synge, R.L.M. 1977. Free amino acids of potato tubers: A survey of published results set out according to potato variety. Potato Research 20: 1–7.

    Article  CAS  Google Scholar 

  • Tang, D., J.J. Liu, A. Rundle, et al. 2007. Grilled meat consumption and PhIP-DNA adducts in prostate carcinogenesis. Cancer Epidemiology Biomarkers and Prevention 16: 803–808.

    Article  CAS  Google Scholar 

  • Tardiff, R.G., M.L. Gargas, C.R. Kirkman, et al. 2010. Estimation of safe dietary intake levels of acrylamide for human. Food and Chemical Toxicology 48: 658–667. doi:10.1016/j.fct.2009.11.048.

    Article  CAS  Google Scholar 

  • Tareke, E., P. Ryrberg, P. Karlsson, et al. 2002. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of Agricultural and Food Chemistry 50: 4998–5006.

    Article  CAS  Google Scholar 

  • Tsen, S.Y., F. Ameri, and J.S. Smith. 2006. Effects of rosemary extracts on the reduction of heterocyclic amines in beef patties. Journal of Food Sciences 71: C469–C473.

    Article  CAS  Google Scholar 

  • Turesky, R.J. 2007. Formation and biochemistry of carcinogenic heterocyclic aromatic amines in cooked meats. Toxicology Letters 168: 219–227.

    Article  CAS  Google Scholar 

  • Ungar, P.S. (ed.). 2007. Evolution of the human diet: The known, unknown, and the unknowable. New York: Oxford University Press.

    Google Scholar 

  • University of Arkansas, Food Safety Consortium. 2009. Try Thai or Rosemary when spicing the meat to curb carcinogenesis. ScienceDaily. http://www.sciencedaily.com/releasees/2009/05/090527180038.htm, 1 June 2009.

  • USNAS—US National Academy of Sciences. 1981. The health effects of nitrate, nitrite, and N-nitrosocompounds. Washington, D.C: National Academy.

    Google Scholar 

  • US Patent. 2007. Patent # 7220440-Method for reduction of acrylamide in roasted coffee beans, roasted coffee beans having reduced level of acrylamide, an article of commerce.

    Google Scholar 

  • van Dam, R.M., and E.J. Feskens. 2002. Coffee consumption and risk of type 2 diabetes mellitus. Lancet 360: 1477–1478.

    Article  Google Scholar 

  • Vass, M., T.M. Amrein, B. Schonbachler, et al. 2004. Ways to reduce the acrylamide formation in cracker products. Czech Journal of Food Sciences 22: 19–21.

    CAS  Google Scholar 

  • Ventanas, S., D. Martin, M. Estevez, et al. 2006. Analysis of volatile nitrosamines from model system using SPME-DED at different temperatures and times of extraction. Food Chemistry 99: 842–850.

    Article  CAS  Google Scholar 

  • Vivanti, V., E. Finotti, and M. Friedman. 2006. Level of acrylamide precursors asparagines, fructose, glucose, and sucrose in potatoes sold at retail in Italy and the United States. Journal of Food Sciences 71: C81–85.

    Article  CAS  Google Scholar 

  • vom Saal, F.S., B.T. Akingbemi, S.M. Belcher, et al. 2007. Chapel Hill bisphenol A expert panel consensus statement: Integration of mechanisms, effects in animal and potential to impact human health at current levels of exposure. Reproductive Toxicology 24: 13–18.

    Article  CAS  Google Scholar 

  • Vranova, J., and Z. Ciesarova. 2009. Furan in food: A review. Czech Journal of Food Sciences 27: 1–10.

    CAS  Google Scholar 

  • Ward, M.H., R. Sinha, E.F. Heinmann, et al. 1997. Risk of adenocarcinoma of the stomach and esophagus with meat cooking method and doneness preferences. International Journal of Cancer Control 14: 14–19.

    Article  Google Scholar 

  • Walsh, B. 2010. The perils of plastic. Time Magazine April 12 issue. http://www.time.com/time/specials/packages/article/0,28804,1976909_1976908,00.html.

  • Wedzicha, B.L., D.S. Mottram, J.S. Elmore, et al. 2005. Chemistry and safety of acrylamide in food. New York: Springer.

    Google Scholar 

  • Weisburger, J.H., M. Nagao, K. Wakabayashi, et al. 1994. Prevention of heterocyclic amine formation by tea and polyphenol. Cancer Letters 83: 143–147.

    Article  CAS  Google Scholar 

  • Wicklund, T., H. Ostile, O. Lothe, et al. 2006. Acrylamide in potato crisp: The effect of raw material and processing. LWT- Food Science and Technology 39: 571–575.

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) Global and regional food consumption patterns and trends- Availability and changes in consumption of animal products http://www.who.int/nutrition/topics/3_foodconsumption/en/index8.html.

  • Xie, J., B. Sun, F. Zhang, et al. 2008. Volatile flavour constituents in roasted pork. Food Chemistry 109: 508–514.

    Article  CAS  Google Scholar 

  • Yaylayan, V.A. 2006. Precursors, formation and determination of furan in food. Journal für Verbraucherschutz und Lebensmittelsicherheit 1: 5–9.

    Article  CAS  Google Scholar 

  • Yaylayan, V.A., and R.H. Stadler. 2005. Acrylamide formation in food: A mechanistic perspective. Journal of AOAC International 88: 262–267.

    CAS  Google Scholar 

  • Yusa, V., G. Quintas, O. Padro, et al. 2006. Determination of acrylamide in foods by pressurized fluid extraction and liquid chromatography-tandem mass spectrometry used for a survey of Spanish cereal-based foods. Food Additives and Contaminants 23: 237–244.

    Article  CAS  Google Scholar 

  • Zhang, Y., G. Zhang, and Y. Zhang. 2005. Occurrence and analytical methods for acrylamide in heat-treated foods- Review and recent developments. Journal of chromatography. A 1075: 1–21.

    Article  CAS  Google Scholar 

  • Zhang, Y., and Y. Zhang. 2008. Effect of natural antioxidants on kinetic behaviour of acrylamide formation and elimination in low-moisture asparagines-glucose model system. Journal of Food Engineering 85: 105–115.

    Article  CAS  Google Scholar 

  • Zochling, S., and M. Murkovic. 2002. Formation of the heterocyclic aromatic amine PhIP: Identification of precursors and intermediates. Food Chemistry 79: 125–134.

    Article  CAS  Google Scholar 

  • Zyzak, D.V., R.A. Sanders, M. Stojanovic, et al. 2003. Acrylamide formation mechanism in heated food. Journal of Agricultural and Food Chemistry 51: 4782–4787.

    Article  CAS  Google Scholar 

  • Zyzak, D., and M. Stojanovic. 2009. Method for reducing acrylamide in foods, foods having reduced levels of acrylamide and article of commerce. USPTO, US Patent 7524518 B2 issued on April 28.

    Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges timely assistance of Sheridan Alder, Mike Bryan, and Francesco Lai; and offers special thanks to Kyly Whitfield for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humayoun Akhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Her Majesty the Queen, in Right of Canada

About this chapter

Cite this chapter

Akhtar, H. (2012). Reducing process-induced toxins in foods. In: Boye, J., Arcand, Y. (eds) Green Technologies in Food Production and Processing. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1587-9_21

Download citation

Publish with us

Policies and ethics