Skip to main content

Microtechnology and nanotechnology in food science

  • Chapter
  • First Online:

Part of the book series: Food Engineering Series ((FSES))

Abstract

Use of microtechnologies and nanotechnologies in all areas of agriculture and food science is currently increasing as a result of their excellent potential in terms of selectivity, sensitivity, and speed of analysis. Use of such approaches in food safety and food packaging, as well as food quality and in the development of functional foods are some of the emerging topics in the food sector. This chapter briefly describes some applications of nanotechnologies and microtechnologies of particular relevance to food science, and identifies some of the future challenges.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Rahman, S.M., and M.M.M. Ahmed. 2007. Rapid and sensitive identification of buffalo’s, cattle’s and sheep’s milk using species-specific PCR and PCR-RFLP techniques. Food Control 18: 1246–1249.

    Article  CAS  Google Scholar 

  • Akbari, Z., T. Ghomashchi, and A. Aroujalian. 2006. Potential of nanotechnology for food packaging industry. In Proceedings of “Nano and Micro Technologies in the Food and HealthFood Industries,” Amsterdam, The Netherlands, October 25–26, 2006.

    Google Scholar 

  • Alexandre, M., and P. Dubois. 2000. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Materials Science and Engineering R-Reports 28(1–2): 1–63.

    Article  Google Scholar 

  • Alocilja, E.C. 2008. Biosensors for detecting pathogenic bacteria in the meat industry. In Meat biotechnology, ed. F. Toldra. New York, NY: Springer Science  +  Business Media.

    Google Scholar 

  • Andersen, S. 1995. Microencapsulated marine omega-3 fatty acids for use in the food industry. Science and Technology in Europe 1995: 104–106.

    Google Scholar 

  • Anema, S.G. 2009. The use of “lab-on-a-chip” microfluidic SDS electrophoresis technology for the separation and quantification of milk proteins. International Dairy Journal 19: 198–204.

    Article  CAS  Google Scholar 

  • Bendixen, E., R. Taylor, K. Hollung, K.I. Hildrum, B. Picard, and B. Bouley. 2005. Proteomics, an approach towards understanding the biology of meat quality. In Indicators of milk and beef quality, ed. J.F. Hocquette and S. Gigli. Wageningen, The Netherlands: EAAP publication No.112, Wageningen Academic Publishers.

    Google Scholar 

  • Bhandari, D.G., S. Church, A. Borthwick, and M.A. Jensen. 2004. Automated varietal identification using lab-on-a-chip technology. In Proceedings of the 12th ICC Cereal and Bread Congress, Harrogate, UK, May 24–26, 2004.

    Google Scholar 

  • Bhattacharya S., J. Jangy, L. Yangz, D. Akin, and R. Bashiryy. 2007. Biomems and nanotechnology-based approaches for rapid detection of biological entities. Birck Nanotechnology Center, Birck and NCN Publications:1–33.

    Google Scholar 

  • Champagne, C.P., and P. Fustier. 2007. Microencapsulation for the improved delivery of bioactive compounds into foods. Current Opinion in Biotechnology 18: 184–190.

    Article  CAS  Google Scholar 

  • Champagne, C.P., C. Lacroix, and I. Sodini-Gallot. 1994. Immobilized cell technologies for the dairy industry. Critical Reviews in Biotechnology 14: 109–134.

    Article  CAS  Google Scholar 

  • Chandramouli, V., K. Kailasapathy, P. Peiris, and M. Jones. 2004. An improved method of microencapsulation and its evaluation to protect lactobacillus spp. In simulated gastric conditions. Journal of Microbiological Methods 56: 27–35.

    Article  CAS  Google Scholar 

  • Chaudhry, Q., M. Scotter, J. Blackburn, B. Ross, A. Boxall, L. Castle, R. Aitken, and R. Watkins. 2008. Applications and implications of nanotechnologies for the food sector. Food Additives and Contaminants: Part A 25: 241–258.

    Article  CAS  Google Scholar 

  • Chen, M.J., and K.N. Chen. 2008. Encapsulation of probiotics in alginate systems. CRS Delivering Bioactives Newsletter 25(2): 6–9.

    Google Scholar 

  • Chen, C.C., J.Y. Chueh, H. Tseng, H.M. Huang, and S.Y. Lee. 2003. Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials 24: 1167–1173.

    Article  CAS  Google Scholar 

  • Chen, H., J. Weiss, and F. Shahidi. 2006. Nanotechnology in nutraceuticals and functional foods. Food and Technology 60(3): 30–36.

    CAS  Google Scholar 

  • Cientifica. 2006. Quietly nanotechnology joins the food chain. The Sunday Telegraph. October 22, 2006.

    Google Scholar 

  • Cientifica. 2007. Half way to the trillion dollars market. A critical review of the diffusion of nanotechnologies. The nanotechnology market in 2007. http://cientifica.eu/blog/category/finance/april16,2007.

  • De Giulio, B., P. Orlando, G. Barba, R. Coppola, M. De Rosa, A. Sada, P.P. De Prisco, and F. Nazzaro. 2005. Use of alginate and cryo-protective sugars to improve the viability of lactic acid bacteria after freezing and freeze-drying. World Journal of Microbiology and Biotechnology 21: 739–746.

    Article  Google Scholar 

  • El Rassi, Z. 2010. Electrophoretic and electrochromatographic separation of proteins in capillaries: An update covering 2007–2009. Electrophoresis 31: 174–191.

    Article  CAS  Google Scholar 

  • E. Dickinson, T. Van Vliet Eds Food Colloids Biopolymers and Materials, Royal Society of Chemistry (2003).

    Article  CAS  Google Scholar 

  • Esposito, E., R. Cortesi, M. Drechsler, L. Paccamiccio, P. Mariani, C. Contado, E. Stellin, E. Menegatti, F. Bonina, and C. Puglia. 2005. Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharmacological Research 22: 2163–2173.

    Article  CAS  Google Scholar 

  • Fajardo, V., I. González, J. Dooley, S. Garret, H.M. Brown, T. García, and R. Martín. 2009. Application of polymerase chain reaction-restriction fragment length polymorphism analysis and lab-on-a-chip capillary electrophoresis for the specific identification of game and domestic meats. Journal of the Science of Food and Agriculture 89: 843–847.

    Article  CAS  Google Scholar 

  • Farhang, B. 2007. Nanotechnology and lipids. Lipid Technology 19: 132–135.

    Article  Google Scholar 

  • Fávaro-Trindade, C.S., and C.R.F. Grosso. 2002. Microencapsulation of L. Acidophilus (La-05) and B. Lactis (Bb-12) and evaluation of their survival at the pH values of the stomach and in bile. Journal of Microencapsulation 19: 485–494.

    Article  Google Scholar 

  • Fratianni, F., A. Sada, P. Orlando, and F. Nazzaro. 2008. Micro-electrophoretic study of the sarcoplasmic fraction in the dry-cured goat raw ham. The Open Food Science Journal 2: 89–94.

    Article  CAS  Google Scholar 

  • Fratianni, F., L. De Martino, A. Melone, V. De Feo, R. Coppola, and F. Nazzaro. 2010a. Preservation of chicken breast meat treated with thyme and balm essential oils. Journal of Food Science 75: M528–M535.

    Article  CAS  Google Scholar 

  • Fratianni, F., R. Coppola, A. Sada, J. Mendiola, E. Ibañez, and F. Nazzaro. 2010b. A novel functional prebiotic product containing phenolics and anthocyanins. International Journal of Probiotics and Prebiotics 5: 85–90.

    Google Scholar 

  • Garcia-Canas, V., R. Gonzales, and A. Cifuentes. 2004. The combined use of molecular techniques and capillary electrophoresis in food analysis. Trends in Analytical Chemistry 23: 637–643.

    Article  CAS  Google Scholar 

  • Guo, Y., Z. Liu, H. An, M. Li, and N. Hua. 2005. Nano-structure and properties of maize zein studied by atomic force microscopy. Journal of Cereal Science 41: 277–281.

    Article  CAS  Google Scholar 

  • Gutiérrez, J.M., C. González, A. Maestro, I. Solè, C.M. Pey, and J. Nolla. 2008. Nano-emulsions: New applications and optimization of their preparation. Current Opinion in Colloid and Interface Science 13: 245–251.

    Article  Google Scholar 

  • Hall, R.H. 2002. Biosensor technologies for detecting microbiological food borne hazards. Microbiology and Infection 4: 425–432.

    Article  Google Scholar 

  • Hierro, N., A. Gonzalez, A. Mas, and J.M. Guillamon. 2004. New PCR-based methods for yeast identification. Journal of Applied Microbiology 97: 792–801.

    Article  CAS  Google Scholar 

  • Ibanez, E., and A. Cifuentes. 2001. New analytical techniques in food science. Critical Reviews in Food Science and Nutrition 41: 413–450.

    Article  CAS  Google Scholar 

  • Ikeda, M., N. Yamaguchi, K. Tani, and M. Nasu. 2006. Rapid and simple detection of food poisoning bacteria by bead assay with a microfluidic chip-based system. Journal of Microbiological Methods 67: 241–247.

    Article  CAS  Google Scholar 

  • Jing, J.Z., P. Zhao, and B. Wang. 2010. Application of Agilent 2100 bioanalyzer in detection of foodborne pathogens Shigella. In Bioinformatics and Biomedical Engineering (iCBBE), 4th International Conference 18–20 June, 2010 Chengdu, China.

    Google Scholar 

  • Ke, Z., and B. Yong Ping. 2005. Improve the gas barrier property of PET film with montmorillonite by in situ interlayer polymerisation. Materials Letters 59: 3348–3351.

    Article  CAS  Google Scholar 

  • Kirby, C.J., C.J. Whittle, N. Rigby, D.T. Coxon, and B.A. Law. 1991. Stabilization of ascorbic acid by microencapsulation in liposomes. International Journal of Food Science and Technology 26: 437–449.

    CAS  Google Scholar 

  • Kustos, I., B. Kocsis, and F. Kilár. 2007. Bacterial outer membrane protein analysis by electrophoresis and microchip technology. Expert Review of Proteomics 4: 91–106.

    Article  CAS  Google Scholar 

  • Law, W.S., S.F. Li, and L.J. Kricka. 2009. Detection of enteropathogenic Escherichia coli by microchip capillary electrophoresis. Methods in Molecular Biology 509: 169–179.

    Article  CAS  Google Scholar 

  • Lee, C.J., D.A. Scheufele, and B.V. Lewenstein. 2005. Public attitudes toward emerging technologies: Examining the interactive effects of cognitions and effect on public attitudes toward nanotechnology. Science Communication 27: 240–267.

    Article  Google Scholar 

  • Lee, K.H., J.W. Lee, S.W. Wang, L.Y. Liu, M.F. Lee, S.T. Chuang, Y.-M. Shy, and C.H. Chi. 2008. Development of a novel biochip for rapid multiplex detection of seven mastitis-causing pathogens in bovine milk samples. Journal of Veterinary Diagnostic Investigation 20: 463–471.

    Article  Google Scholar 

  • Lei, S.G., S.V. Hoa, and M.T. Ton-That. 2006. Effect of clay types on the processing properties of polypropylene nanocomposites. Computer Science and Technology 66: 1274–1279.

    Article  CAS  Google Scholar 

  • Leroy, F., and L. De Vuyst. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science and Technology 15: 67–78.

    Article  CAS  Google Scholar 

  • Ligler, F.S., C.R. Taitt, L.C. Shriver-Lake, K.E. Sapsford, Y. Shubin, and J.P. Golden. 2003. Array biosensor for detection of toxins. Analytical and Bioanalytical Chemistry 377: 469–477.

    Article  CAS  Google Scholar 

  • Lin, G., and A.P. Lee. 2010. Microfluidics: An emerging technology for food and health science. Annals of the New York Academy of Sciences 1190: 186–192.

    Article  Google Scholar 

  • Liu, W.T., and L. Zhu. 2005. Environmental microbiology-on-a-chip and its future impacts. Trends in Biotechnology 23: 174–179.

    Article  CAS  Google Scholar 

  • Lonigro, S.L., F. Valerio, M. De Angelis, P. De Bellis, and P. Lavermicocca. 2009. Microfluidic technology applied to cell-wall protein analysis of olive related lactic acid bacteria. International Journal of Food Microbiology 130: 6–11.

    Article  CAS  Google Scholar 

  • Lopez-Rubio, A., R. Gavara, and J.M. Lagaron. 2006. Bioactive packaging: Turning foods into healthier foods through biomaterials. Trends in Food Science and Technology 17: 567–575.

    Article  CAS  Google Scholar 

  • Morris, E. 2003. Food colloids, biopolymers and materials.

    Article  CAS  Google Scholar 

  • Nazzaro, F., A. Sada, F. Scognamiglio, and F. Fratianni. 2008a. Monitoraggio della frazione proteica sarcoplasmatica in salami tipo Napoli prodotti con estratti vegetali come additivi naturali. In Proceedings of the Conference “Qualicibi, cibi di ieri e di domani:qualità e sicurezza tra tradizione e innovazione.” May, 2008 Positano, Italy 27–30.

    Google Scholar 

  • Nazzaro, F., F. Fratianni, A. Sada, and P. Orlando. 2008b. Synbiotic potential of carrot juice supplemented with lactobacillus spp. And inulin or fructooligosaccharides. Journal of the Science of Food and Agriculture 88: 2271–2276.

    Article  CAS  Google Scholar 

  • Nazzaro, F., F. Fratianni, A. Sada, and R. Coppola. 2009. Microfluidic lab-on-a-chip methodology as alternative method to study milk proteins. In Proceedings of the Conference MICheese. Avellino, September, 2009 Italy.

    Google Scholar 

  • Niemeyer, C.M. 2002. The developments of semisynthetic DNA–protein conjugates. Trends in Biotechnology 20: 395–401.

    Article  CAS  Google Scholar 

  • Pirondini, A., U. Bonas, E. Maestri, G. Visioli, M. Marmiroli, and N. Marmiroli. 2010. Yield and amplificability of different DNA extraction procedures for traceability in the dairy food chain. Food Control 21: 663–668.

    Article  CAS  Google Scholar 

  • Powell, J.J., N. Faria, E. Thomas-McKay, and L.C. Peleaù. 2010. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. Journal of Autoimmunity 34: J226–J233.

    Article  CAS  Google Scholar 

  • Rafter, J.H. 2002. Scientific basis of biomarkers and benefits of functional foods for reduction of disease risk: Cancer. British Journal of Nutrition 88: S219–S224.

    Article  CAS  Google Scholar 

  • Ray, S.S., P. Maiti, M. Okamoto, K. Yamada, and K. Ueda. 2002. New polylactide/layered silicate nanocomposites. 1. Preparation characterization properties. Macromolecules 35: 3104–3110.

    Article  CAS  Google Scholar 

  • Ré, M.I. 1998. Microencapsulation by spray drying. Drying Technology 16: 1195–1236.

    Article  Google Scholar 

  • Reineccius, G.A. 1995. Liposomes for controlled release in the food industries. In: Encapsulation and controlled release of food ingredients. ACS Symposium Series 590: 113–131.

    Article  CAS  Google Scholar 

  • Saleh-Lakha, S., and J.T. Trevors. 2010. Microfluidic applications in microbiology. Journal of Microbiological Methods 82: 108–111.

    Article  CAS  Google Scholar 

  • Sanguansri, P., and M.A. Augustin. 2006. Nanoscale materials development: A food industry perspective. Trends in Food Science and Technology 17: 547–556.

    Article  CAS  Google Scholar 

  • Schartel, B., P. Potschke, U. Knoll, and M. Abdel-Goad. 2005. Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. European Polymer Journal 415: 1061–1070.

    Article  Google Scholar 

  • Schrooyen, P.M.M., R. van der Meer, and C.G. De Kruif. 2001. Microencapsulation: Its application in nutrition. Proceedings of the Nutrition Society 60: 475–479.

    Article  CAS  Google Scholar 

  • Shibata, T. 2002. Method for producing green tea in microfine powder. US Patent 6,416,803.

    Google Scholar 

  • Siro, I., E. Kapoln, and A. Lugasi. 2008. Functional food: Product development, marketing and consumer acceptance—A review. Appetite 51: 456–467.

    Article  Google Scholar 

  • Sozer, N., and J.L. Kokini. 2009. Nanotechnology and its applications in the food sector. Trends in Biotechnology 27: 82–89.

    Article  CAS  Google Scholar 

  • Spielbauer, B., and F. Stahl. 2005. Impact of microarray technology in nutrition and food research. Molecular Nutrition and Food Research 49: 908–917.

    Article  CAS  Google Scholar 

  • Srinivas, P.R., M. Philbert, T.Q. Vu, Q. Huang, J.L. Kokini, E. Saos, et al. 2010. Nanotechnology research: Applications in nutritional sciences. Journal of Nutrition 140: 119–124.

    Article  CAS  Google Scholar 

  • Sun, Y., Y.C. Kwok, P. Foo-Peng Lee, and N.T. Nguyen. 2009. Rapid amplification of genetically modified organisms using a circular ferrofluid-driven PCR microchip. Analytical and Bioanalytical Chemistry 394: 1505–1508.

    Article  CAS  Google Scholar 

  • Uthayakumaran, S., I.L. Batey, and C.W. Wrigley. 2005. On-the-spot identification of grain variety and wheat-quality type by lab-on-a-chip capillary electrophoresis. Journal of Cereal Science 41: 371–374.

    Article  CAS  Google Scholar 

  • Uthayakumaran, S., Y. Listiohadi, M. Baratta, I.L. Batey, and C.W. Wrigley. 2006. Rapid identification and quantitation of high-molecular-weight glutenin subunits. Journal of Cereal Science 44: 34–39.

    Article  CAS  Google Scholar 

  • Vinayaka, C., and M.S. Thakur. 2010. Focus on quantum dots as potential fluorescent probes for monitoring food toxicants and foodborne pathogens. Analytical and Bioanalytical Chemistry 397: 1445–1455.

    Article  CAS  Google Scholar 

  • Wang, K.K., C.M. Koo, and I.J. Chung. 2003. Physical properties of polyethylene/silicate nanocomposite blown films. Journal of Applied Polymer Science 89: 2131–2136.

    Article  CAS  Google Scholar 

  • Weiss, J., P. Takhistov, and J. McClements. 2006. Functional materials in food nanotechnology. Journal of Food Science 71: 107–116.

    Article  Google Scholar 

  • Wrigley, C.W., I.L. Batey, S. Uthayakumaran, and W.G. Rathmell. 2006. Modern approaches to food diagnostics for grain quality assurance. Food Australia 58: 538–542.

    CAS  Google Scholar 

  • Wu, D., J. Qin, and B. Lin. 2008. Electrophoretic separations on microfluidic chips. Journal of Chromatography A 1184: 542–559.

    Article  CAS  Google Scholar 

  • Yaghmur, A., and O. Glatter. 2009. Characterization and potential applications of nanostructured aqueous dispersions. Advances in Colloid and Interface Science 147–148: 333–342.

    Article  Google Scholar 

  • Yao, G., L. Wang, Y. Wu, J. Smith, J. Xu, W. Zhao, E. Lee, and W. Tan. 2006. FloDots: Luminescent nanoparticles. Jornal of Analytical and Bioanalytical Chemistry 385: 518–524.

    Article  CAS  Google Scholar 

  • Yih, T.C., and M. Al-Fandi. 2006. Engineered nanoparticles as precise drug delivery systems. Journal of Cellular Biochemistry 97: 114–119.

    Article  Google Scholar 

  • Zagorec, M., S. Chaillou, M.C. Champomier-Vergès, and A.M. Crutz-Le Coq. 2008. Role of bacterial ‘Omics’ in food fermentation. In Molecular techniques in the microbial ecology of fermented foods, ed. L. Cocolin and D. Ercolini. New York: Springer.

    Google Scholar 

  • Zhao, X., L.R. Hilliard, S.J. Mechery, Y. Wang, R. Bagwe, S. Jin, and W.A. Tan. 2004. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. PNAS 101: 15027–15032.

    Article  CAS  Google Scholar 

  • Zhao, R.X., P.E. Torley, and J. Halley. 2008. Emerging biodegradable materials: Starch- and protein-based bio-nanocomposites. Journal of Materials Science 43: 3058–3071.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filomena Nazzaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Her Majesty the Queen, in Right of Canada

About this chapter

Cite this chapter

Nazzaro, F., Fratianni, F., Coppola, R. (2012). Microtechnology and nanotechnology in food science. In: Boye, J., Arcand, Y. (eds) Green Technologies in Food Production and Processing. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1587-9_17

Download citation

Publish with us

Policies and ethics